Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
quang
Xem chi tiết
quang
Xem chi tiết
quang
Xem chi tiết
quang
Xem chi tiết
free fire
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 2 2022 lúc 22:10

a: Khi \(\widehat{ABC}=70^0\) thì \(\widehat{ACB}=70^0;\widehat{BAC}=40^0\)

Khi \(\widehat{BAC}=100^0\) thì \(\widehat{ABC}=\widehat{ACB}=40^0\)

Khi \(\widehat{BAC}=90^0\) thì \(\widehat{ABC}=\widehat{ACB}=45^0\)

b: Xét ΔABE và ΔACD có

AB=AC

\(\widehat{A}\) chung

AE=AD

Do đó: ΔABE=ΔACD

Suy ra: BE=CD

Lê Thị Thanh Thúy
Xem chi tiết
Trần Thu Ha
Xem chi tiết
Thảo Lưu
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 10 2021 lúc 0:01

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Suy ra: \(NM=\dfrac{BC}{2}=3.5\left(cm\right)\)

Hoàng Nguyệt
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 1 2021 lúc 23:09

a)Sửa đề: BM=CN

Xét (O) có 

OB là bán kính(gt)

O là trung điểm của BC(gt)

Do đó: BC là đường kính của (O)

Xét (O) có

ΔBMC nội tiếp đường tròn(B,M,C∈(O))

BC là đường kính của (O)(cmt)

Do đó: ΔBMC vuông tại M(Định lí)

Xét (O) có 

ΔBNC nội tiếp đường tròn(B,N,C∈(O))

BC là đường kính của (O)(cmt)

Do đó: ΔBNC vuông tại N(Định lí)

Xét ΔBMC vuông tại M và ΔCNB vuông tại N có 

BC là cạnh chung

\(\widehat{MBC}=\widehat{NCB}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔBMC=ΔCNB(cạnh huyền-góc nhọn)

⇒BM=CN(hai cạnh tương ứng)

b) Xét ΔOBM và ΔOCN có 

OB=OC(=R)

OM=ON(=R)

BM=CN(cmt)

Do đó: ΔOBM=ΔOCN(c-c-c)

Akai Haruma
30 tháng 1 2021 lúc 16:44

Lời giải:

a) Đề đúng phải là CMR $BM=CN$.

Xét tam giác $BMC$ và $CNB$ có:

$\widehat{BMC}=\widehat{CNB}=90^0$ (góc nt chắn nửa đường tròn)

$\widehat{B}=\widehat{C}$ (do $ABC$ là tam giác cân tại $A$)

$\Rightarrow \triangle BMC\sim \triangle CNB$ (g.g)

$\Rightarrow BM=CN$ (đpcm)

b) 

Xét tam giác $OBM$ và $OCN$ có:

$OB=OC=R$

$OM=ON=R$

$BM=CN$ (theo phần a)

$\Rightarrow \triangle OBM=\triangle OCN$ (c.c.c)

c) 

$\widehat{NBA}=\widehat{NBM}=\frac{1}{2}\text{số đo cung MN}$

$\widehat{MON}=\text{số đo cung MN}$

$\Rightarrow \widehat{NBA}=\frac{1}{2}\widehat{MON}$

d) 

$\widehat{BMC}=\widehat{CNB}=90^0$ (góc nt chắn nửa đường tròn)

$\Rightarrow BN\perp AC, CM\perp AB$

$ABC$ là tam giác cân tại $A$, $O$ là trung điểm $BC$ nên đường trung tuyến $AO$ đồng thời là đường cao. Suy ra $AO\perp BC$

Như vậy $AO, BN, CM$ là 3 đường cao của tam giác $ABC$ nên $AO, BN, CM$ đồng quy (đpcm)

 

Akai Haruma
30 tháng 1 2021 lúc 16:47

Hình vẽ:

undefined