a)Sửa đề: BM=CN
Xét (O) có
OB là bán kính(gt)
O là trung điểm của BC(gt)
Do đó: BC là đường kính của (O)
Xét (O) có
ΔBMC nội tiếp đường tròn(B,M,C∈(O))
BC là đường kính của (O)(cmt)
Do đó: ΔBMC vuông tại M(Định lí)
Xét (O) có
ΔBNC nội tiếp đường tròn(B,N,C∈(O))
BC là đường kính của (O)(cmt)
Do đó: ΔBNC vuông tại N(Định lí)
Xét ΔBMC vuông tại M và ΔCNB vuông tại N có
BC là cạnh chung
\(\widehat{MBC}=\widehat{NCB}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔBMC=ΔCNB(cạnh huyền-góc nhọn)
⇒BM=CN(hai cạnh tương ứng)
b) Xét ΔOBM và ΔOCN có
OB=OC(=R)
OM=ON(=R)
BM=CN(cmt)
Do đó: ΔOBM=ΔOCN(c-c-c)
Lời giải:
a) Đề đúng phải là CMR $BM=CN$.
Xét tam giác $BMC$ và $CNB$ có:
$\widehat{BMC}=\widehat{CNB}=90^0$ (góc nt chắn nửa đường tròn)
$\widehat{B}=\widehat{C}$ (do $ABC$ là tam giác cân tại $A$)
$\Rightarrow \triangle BMC\sim \triangle CNB$ (g.g)
$\Rightarrow BM=CN$ (đpcm)
b)
Xét tam giác $OBM$ và $OCN$ có:
$OB=OC=R$
$OM=ON=R$
$BM=CN$ (theo phần a)
$\Rightarrow \triangle OBM=\triangle OCN$ (c.c.c)
c)
$\widehat{NBA}=\widehat{NBM}=\frac{1}{2}\text{số đo cung MN}$
$\widehat{MON}=\text{số đo cung MN}$
$\Rightarrow \widehat{NBA}=\frac{1}{2}\widehat{MON}$
d)
$\widehat{BMC}=\widehat{CNB}=90^0$ (góc nt chắn nửa đường tròn)
$\Rightarrow BN\perp AC, CM\perp AB$
$ABC$ là tam giác cân tại $A$, $O$ là trung điểm $BC$ nên đường trung tuyến $AO$ đồng thời là đường cao. Suy ra $AO\perp BC$
Như vậy $AO, BN, CM$ là 3 đường cao của tam giác $ABC$ nên $AO, BN, CM$ đồng quy (đpcm)