Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Hoàng Phúc
Xem chi tiết
Trần Quốc Đạt
18 tháng 12 2016 lúc 15:34

Ý tưởng: Đặt \(xy=\frac{1}{k}\) hay \(y=\frac{1}{kx}\).

Ta có \(2x^2+\frac{1}{x^2}+\frac{4}{y^2}=4\Rightarrow2x^2+\frac{1}{x^2}+4k^2x^2=4\)

Suy ra \(\left(4k^2+2\right)x^4-4x^2+1=0\) 

Đặt \(X=x^2\). Giả thiết trở thành \(\left(4k^2+2\right)X^2-4X+1=0\) (1), trong đó \(X\) dương.

Do \(X\) tồn tại (theo đề bài) nên có thể coi (1) là phương trình tham số \(k\), và phải có nghiệm dương.

\(\Delta'=2^2-\left(4k^2+2\right)=2-4k^2\)

Nhận xét: Nếu (1) có 2 nghiệm (tính cả nghiệm kép) thì tổng và tích của chúng đều dương nên 2 nghiệm là dương.

Vậy chỉ cần \(\Delta'\ge0\), tức là \(-\sqrt{2}\le\frac{1}{k}\le\sqrt{2}\)

Vậy min\(M=2016-\sqrt{2}\)(đẳng thức xảy ra tại \(x=-\frac{1}{\sqrt{2}},y=2\),

max\(M=2016+\sqrt{2}\) (đẳng thức xảy ra tại \(x=-\frac{1}{\sqrt{2}},y=-2\)

Nguyen Anh Duy
18 tháng 12 2016 lúc 18:14

bằng 20 đó bạn

vo thi nhien
19 tháng 12 2016 lúc 19:14

20 nha 

Nguyễn Thy Hạ
Xem chi tiết
Edowa Conan
16 tháng 8 2016 lúc 21:24

Câu 1:

a)A=|x+1|+2016

       Vì |x+1|\(\ge\)0

           Suy ra:|x+1|+2016\(\ge\)2016

     Dấu = xảy ra khi x+1=0

                                x=-1

 Vậy MinA=2016 khi x=-1

b)B=2017-|2x-\(\frac{1}{3}\)|

       Vì -|2x-\(\frac{1}{3}\)|\(\le\)0

             Suy ra:2017-|2x-\(\frac{1}{3}\)|\(\le\)2017

    Dấu = xảy ra khi \(2x-\frac{1}{3}=0\)

                               \(2x=\frac{1}{3}\)

                                \(x=\frac{1}{6}\)

Vậy Max B=2017 khi \(x=\frac{1}{6}\)

c)C=|x+1|+|y+2|+2016

         Vì |x+1|\(\ge\)0

              |y+2|\(\ge\)0

     Suy ra:|x+1|+|y+2|+2016\(\ge\)2016

                Dấu = xảy ra khi x+1=0;x=-1

                                           y+2=0;y=-2

Vậy MinC=2016 khi x=-1;y=-1

d)D=-|x+\(\frac{1}{2}\)|-|y-1|+10

      =10-|x+\(\frac{1}{2}\)|-|y-1|

             Vì      -|x+\(\frac{1}{2}\)|\(\le\)0

                         -|y-1|  \(\le\)0

    Suy ra:      10-|x+\(\frac{1}{2}\)|-|y-1|    \(\le\)10

Dấu = xảy ra khi \(x+\frac{1}{2}=0;x=-\frac{1}{2}\)

                           y-1=0;y=1

          Vậy Max D=10 khi x=\(-\frac{1}{2}\);y=1           



 

Lightning Farron
16 tháng 8 2016 lúc 21:52

Bài 1:

a)Ta thấy: \(\left|x+1\right|\ge0\)

\(\Rightarrow\left|x+1\right|+2016\ge0+2016=2016\)

\(\Rightarrow A\ge2016\)

Dấu = khi x=-1

Vậy MinA=2016 khi x=-1

b)Ta thấy:\(\left|2x-\frac{1}{3}\right|\ge0\)

\(\Rightarrow-\left|2x-\frac{1}{3}\right|\le0\)

\(\Rightarrow2017-\left|2x-\frac{1}{3}\right|\le2017-0=2017\)

\(\Rightarrow B\le2017\)

Dấu = khi x=1/6

Vậy Bmin=2017 khi x=1/6

c)Ta thấy:\(\begin{cases}\left|x+1\right|\\\left|y+2\right|\end{cases}\ge0\)

\(\Rightarrow\left|x+1\right|+\left|y+2\right|\ge0\)

\(\Rightarrow\left|x+1\right|+\left|y+2\right|+2016\ge0+2016=2016\)

\(\Rightarrow D\ge2016\)

Dấu = khi x=-1 và y=-2

Vậy MinD=2016 khi x=-1 và y=-2

d)Ta thấy:\(\begin{cases}-\left|x+\frac{1}{2}\right|\\-\left|y-1\right|\end{cases}\le0\)

\(\Rightarrow-\left|x+\frac{1}{2}\right|-\left|y-1\right|\le0\)

\(\Rightarrow-\left|x+\frac{1}{2}\right|-\left|y-1\right|+10\le0+10=10\)

\(\Rightarrow D\le10\)

Dấu = khi x=-1/2 và y=1

Vậy MaxD=10 khi x=-1/2 và y=1

Nguyễn Huy Tú
16 tháng 8 2016 lúc 21:21

a) ( x + 1 )( y + 2 ) = 0

\(\Rightarrow\) x + 1 = 0 hoặc y + 2 = 0

+) x + 1 = 0 \(\Rightarrow\) x = -1

+) y + 2 = 0 \(\Rightarrow\) y = -2

Vậy x = -1; y = -2

Hồ Lê Phú Lộc
Xem chi tiết
Loi Nguyen Gia
18 tháng 3 2016 lúc 22:32

x^2-2x+1+2014>=2014 min B=2014 khi x=1

Nguyễn Nhật Vy
18 tháng 3 2016 lúc 22:43

min của B = 2016

               = 0^2-2x0+2016

               =  0-0+2016

                khi  x = 0 (vì min: nhỏ nhất)

ủng hộ nhé

Duong Thi Nhuong
Xem chi tiết
haphuong01
27 tháng 7 2016 lúc 9:42

A=x2+2x+2016=(x2+2x+1)+2015=(x+1)2+2015

ta thấy : (x+1)2>=0

=>A>=2015

=> GTNN của A=2015 khi x=-1

B=-x2+2x+2016=-(x2-2x+1)+2017=2017-(x-1)2

ta thấy :-(x-1)2<=0

=> GTLN của B=2017 khi x=1

Nguyễn Quỳnh Hương
Xem chi tiết
Ngọc Ánh
Xem chi tiết
Nguyen Anh Dao
Xem chi tiết
ngonhuminh
7 tháng 12 2016 lúc 12:52

x khac 0

Bx^2=x^2-2x+2016

(1-B)x^2-2x+2016=0

\(\Rightarrow\Delta=1-4.\left(1-B\right).2016\ge0\Rightarrow1-4.2016+4.2016B\ge0\)

\(B\ge\frac{4.2016-1}{4.2016}=1-\frac{1}{4.2016}\)

GTNN(B)=1-1/(4.2016)

bắt hết các loại gió mùa

Nguyễn Thị Mỹ Lệ
Xem chi tiết
Nguyễn Như Nam
30 tháng 11 2016 lúc 12:56

Ta có:

\(B=\frac{x^2-2x+2016}{x^2}\Rightarrow2016B=\frac{2015x^2+\left(x^2-2.2016x+2016^2\right)}{x^2}=2015+\frac{\left(x-2016\right)^2}{x^2}\ge2015\)

Dấu "=" xảy ra khi \(\frac{\left(x-2016\right)^2}{x^2}=0\Rightarrow x=2016\)

\(\Rightarrow2016B_{min}=2015\Rightarrow B_{min}=\frac{2015}{2016}\) khi \(x=2016\)

Nguyễn Thị Mỹ Lệ
30 tháng 11 2016 lúc 11:32

Giúp e với

Ryan Nguyễn
Xem chi tiết