Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lương Tấn	Sang
Xem chi tiết

\(\sqrt{x+2}\) + \(\sqrt{16x+32}\) - \(\sqrt{4x+8}\) = 16 (đk \(x\ge\) -2)

\(\sqrt{x+2}\) + \(\sqrt{16\left(x+2\right)}\) - \(\sqrt{4\left(x+2\right)}\) = 16

\(\sqrt{x+2}\) + 4\(\sqrt{x+2}\) - 2\(\sqrt{x+2}\) = 16

( 1 + 4 - 2)\(\sqrt{x+2}\) = 16

         3\(\sqrt{x+2}\) = 16

           \(\sqrt{x+2}\) = \(\dfrac{16}{3}\)

             \(x+2\) = \(\dfrac{256}{9}\)

             \(x\) = \(\dfrac{256}{9}\) - 2

            \(x\) = \(\dfrac{238}{9}\) (thỏa mãn)

Vậy \(x=\dfrac{238}{9}\)

 

      

đấng ys
Xem chi tiết
Ngô Thành Chung
10 tháng 10 2021 lúc 20:46

y = \(\sqrt[3]{\left(x^2+8\right)^2}-3\sqrt[3]{x^2+8}+1\)

Đặt \(\sqrt[3]{\left(x^2+8\right)}=t\)

Do x2 + 8 ≥ 8 với mọi x

⇒ t ≥ 2 với mọi x

y = t2 - 3t + 1

Min của hàm số đã cho là Min của y = g(t) = t2 - 3t + 1 trên [2 ; +\(\infty\))

g(t) đồng biến trên \(\left(\dfrac{3}{2};+\infty\right)\) nên nó đồng biến trên (2 ; +\(\infty\))

⇒ Giá trị nhỏ nhất của g(t) trên [2 ; +\(\infty\)) là g(2) = - 1

Yết Thiên
Xem chi tiết
Lấp La Lấp Lánh
25 tháng 9 2021 lúc 16:43

1) ĐKXĐ: \(16x^2-25\ge0\)

\(\Leftrightarrow x^2\ge\dfrac{25}{16}\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{5}{4}\\x\le-\dfrac{5}{4}\end{matrix}\right.\)

2) ĐKXĐ: \(4x^2-49\ge0\Leftrightarrow x^2\ge\dfrac{49}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{7}{2}\\x\le-\dfrac{7}{2}\end{matrix}\right.\)

3) ĐKXĐ: \(8-x^2\ge0\Leftrightarrow x^2\le8\)

\(\Leftrightarrow-2\sqrt{2}\le x\le2\sqrt{2}\)

4) ĐKXĐ: \(x^2-12\ge0\Leftrightarrow x^2\ge12\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge2\sqrt{3}\\x\le-2\sqrt{3}\end{matrix}\right.\)

5) ĐKXĐ: \(x^2+4\ge0\left(đúng\forall x\right)\)

Yết Thiên
Xem chi tiết
Lấp La Lấp Lánh
24 tháng 9 2021 lúc 0:23

1) \(ĐK:x\in R\)

2) \(ĐK:x< 0\)

3) \(ĐK:x\in\varnothing\)

4) \(=\sqrt{\left(x+1\right)^2+2}\) 

\(ĐK:x\in R\)

5) \(=\sqrt{-\left(a-4\right)^2}\)

\(ĐK:x\in\varnothing\)

 

Đỗ Hồng Ngọc
Xem chi tiết
Nguyễn Hiếu Ngân
20 tháng 6 2019 lúc 13:35

Ta có : \(x+3-4\sqrt{x-1}=\left(\sqrt{x-1}-2\right)^2\)và \(x+15-8\sqrt{x-1}=\left(\sqrt{x-1}-4\right)^2\)
Suy ra: B=\(\sqrt{x-1}-2+\sqrt{x-1}-4=2\sqrt{x-1}-6\)
Ta lại có : \(x-1\ge0\)=>\(B\ge-6\)dấu ''='' xảy ra khi: x-1=0 <=>x=1
Vậy minB=-6 khi x=1

Thảo Ngọc Huỳnh
Xem chi tiết
Nguyễn Minh Thu
24 tháng 7 2016 lúc 8:41

 Tìm x, biết: 

                   \(\sqrt{16x}=8\) 

             \(\Leftrightarrow16x=8^2\)

             \(\Leftrightarrow16x=64\\\)

             \(\Leftrightarrow x=64:16\)

             \(\Leftrightarrow x=4\)

Không Quan Tâm
24 tháng 7 2016 lúc 8:45

x =4

Đặng Tuyết Đoan
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 8 2021 lúc 20:31

a) Ta có: \(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)

\(\Leftrightarrow6\sqrt{x-3}-\sqrt{x-3}-\sqrt{x-3}=20\)

\(\Leftrightarrow4\sqrt{x-3}=20\)

\(\Leftrightarrow x-3=25\)

hay x=28

b) Ta có: \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)

\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)

\(\Leftrightarrow2\sqrt{x+2}=6\)

\(\Leftrightarrow x+2=9\)

hay x=7

Lương Tấn	Sang
Xem chi tiết
Thầy Hùng Olm
4 tháng 7 2023 lúc 22:31

Đk: 2-x ≥ 0 hay x ≤ 2

Đặt \(\sqrt{2-x}=t\) với t ≥ 0

PT tương đương

t -3t+ 4t = 16

\(\Leftrightarrow\)2t = 16

\(\Rightarrow\) t = 8 (TMĐK)

Vậy \(\sqrt{2-x}=8\)

2 - x = 64

vậy x = -62

Lương Tấn	Sang
Xem chi tiết

\(\sqrt{x-1}\) - \(\sqrt{9x-9}\) + \(\sqrt{16x-16}\) = 4 (đk \(x\ge\)1)

\(\sqrt{x-1}-\) \(\sqrt{9\left(x-1\right)}\) + \(\sqrt{16\left(x-1\right)}\) = 4

\(\sqrt{x-1}\) - 3\(\sqrt{x-1}\) + \(4\sqrt{x-1}\) = 4  

 \(\sqrt{x-1}\)( 1 - 3 + 4 ) = 4

  \(\sqrt{x-1}\) . 2 = 4

  \(\sqrt{x-1}\) = 4 : 2

  \(\sqrt{x-1}\) = 2

   \(x-1\) =4

  \(x=4+1\)

 \(x=5\) (thỏa mãn)

Vậy \(x\) = 5