cho tam giác ABC,AD là đường phân giác (D thuộc BC) và BD<DC. Chứng minh AB<AC
cho tam giác ABC, AD là đường phân giác  (D thuộc BC). Biết tỉ số BD/DC=3/5, BC=9. Tính BD,DC
Cho tam giác ABC vuông tại A. Đường phân giác BD ( D thuộc AC). Kẻ DH vuông góc với BC ( H thuộc BC ). a,CMR:tam giác ABD và tam giác HBD b,so sánh AD & DC
a, Ta có: \(BD\) là phân giác \(\widehat{ABC}\)
\(\Rightarrow\widehat{ABD}=\widehat{HBD}\left(tc\right)\)
\(\)Xét ΔABD vuông tại A và ΔHBD vuông tại H có:
\(BDchung\)
\(\widehat{ABD}=\widehat{HBD}\left(cmt\right)\)
\(\Rightarrow\) ΔABD = ΔHBD ( ch.gn )
b, Ta có: ΔABD = ΔHBD ( cmt )
\(\Rightarrow AD=DH\left(2ctu\right)\)
Xét ΔDHC vuông tại H có:
HC là cạnh huyền
\(\Rightarrow\) HC là cạnh lớn nhất
⇒ \(DH< CH\)
Mà \(DH=AD\)
\(\Rightarrow AD< CH\)
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
b: ΔBAD=ΔBHD
=>DA=DH
mà DH<DC
nên DA<DC
Cho tam giác ABC vuông tại A. Đường phân giác BD ( D thuộc AC). Kẻ DH vuông góc với BC ( H thuộc BC ). a,CMR:tam giác ABD và tam giác HBD b,so sánh AD & DC
Cho tam giác ABC vuông tại A có BD là phân giác, kẻ DE vuông góc với BC (E thuộc BC). Gọi F là giao điểm của AB và DE. Chứng minh rằng:
a. Tam giác ABD = tam giác EBD b.BD là đường trung trực của AE
c. AD < DC d. E, D, F thẳng hàng và BD vuông góc với CF
e. 2(AD + AF)>CF
a, Xét tam giác ABD và tam giác EBD có:
góc BAD=BED(tam giác abc vuông, DE vuông góc BC)
BD=BD(chung)
góc ABD=EBD (BD là phân giác)
=)tam giác ABD=tam giác EBD(cạnh huyền-góc nhọn)
vậy.....
b,gọi giao của AE và BD là O
ta có tam giác ABD=tam giác EBD
=)AB=BE ( 2 cạnh tưng ứng)
xét tam giác ABO và tam giác EBO có:
AB=BE (cmt)
góc ABO=EBO ( BD là phân giác)
BO=BO ( chung)
=)tam giác ABO=EBO (c-g-c)
=)AO=OE ( 2 cạnh tương ứng)(1)
AOB=EOB( 2 góc tương ứng)
mà AOB+EOB=180 độ ( 2 góc kề bù)
=)AOB=EOB=180:2=90độ
=)BO vuông góc AE (2)
từ(1) và (2)=)BO là trung trực AE
vậy....
c, Ta có tam giác DEC vuông tại E
=)DC>DE ( trong tam giác vuông cạnh huyền là cạnh lớn nhất)
mà DE=DA ( tam giác ABD= tam giác EBD)
=)DC>DA
hay DA<DC
vậy....
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
b: Ta có: ΔBAD=ΔBED
nên BA=BE và DA=DE
Ta có: BA=BE
nên B nằm trên đường trung trực của AE\(\left(1\right)\)
Ta có: DA=DE
nên D nằm trên đường trung trực của AE\(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra BD là đường trung trực của AE
c: Ta có: DA=DE
mà DE<DC
nên DA<DC
d: Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
Do đó: ΔADF=ΔEDC
Suy ra: AF=EC và DF=DC
Ta có: BA+AF=BF
BE+EC=BC
mà BA=BE
và AF=EC
nên BF=BC
Ta có: BF=BC
nên B nằm trên đường trung trực của CF\(\left(3\right)\)
Ta có: DF=DC
nên D nằm trên đường trung trực của CF\(\left(4\right)\)
Từ \(\left(3\right),\left(4\right)\) suy ra BD là đường trung trực của CF
hay BD\(\perp\)CF
cho tam giác abc vuông tại a có ab=6cm ac=8cm đường cao ah (h thuộc bc).kẻ d là tia phân giác bd(d thuộc ac)
a)tính ad và dc
b)chứng mnh bh/ab=ad/ac
giúp mik vớ
a) Áp dụng định lí Py-ta-go vào ΔABC vuông tại A ta có:
\(BC^2\)= \(AB^{^{ }2}\)+\(AC^2\)=\(6^2\)+\(8^2\)= 100⇒ BC=\(\sqrt{100}\)=10 (cm)
Xét ΔABC có BD là tia phân giác \(\widehat{ABC}\) ,theo t/c ta có:
\(\dfrac{AB}{BC}\)=\(\dfrac{AD}{DC}\) ⇒\(\dfrac{DC}{BC}\)=\(\dfrac{AD}{AB}\)hay \(\dfrac{DC}{10}\)=\(\dfrac{AD}{6}\)= \(\dfrac{DC+AD}{10+6}\)=\(\dfrac{AC}{16}\)=\(\dfrac{8}{16}\)=\(\dfrac{1}{2}\)
⇒\(\left\{{}\begin{matrix}AD=6.\dfrac{1}{2}=3\left(cm\right)\\DC=10.\dfrac{1}{2}=5\left(cm\right)\end{matrix}\right.\)
cho tam giác ABC vuông tại A có AB= 3 cm : AC=4cm vẽ đường cao AH(AH thuộc BC)
a) CM tam giác ABC đồng dạng với tam giác HAC
b)tính BC,AH
c)BD là tia phân giác của B(D thuuocj AC),E là giao điểm của AH và BD CM BD.HE=BE.AD
CM AE=AD
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
c: góc AED=góc BEH=90 độ-góc EBH
góc ADE=90 độ-góc ABD
góc EBH=góc ABD
=>góc AED=góc ADE
=>AE=AD
Cho tam giác ABC cân tại A, BD là đường phân giác của góc B, D thuộc AC . Cho góc A=100 độ . CM AD+BD=BC
Câu hỏi của Phạm Thùy Dung - Toán lớp 7 - Học toán với OnlineMath
tam giác abc ab<ac d nằm giữa b và c e thuộc đường thẳng bc nhưng ngoài đoạn bc sao cho bd/cd=eb/ec=ac/ab. chứng minh ad là phân giác trong, ae là phân giác ngoài.
Cho tam giác ABC có AD là tia phân giác góc A, D thuộc BC và BD=CD