ta co d / ly hinh chieu
nen bd<dc
=)ab<ac
ta co d / ly hinh chieu
nen bd<dc
=)ab<ac
cho tam giác ABC vuông tại A có AB<AC, kẻ đường phân giác BD của ABC( D thuộc AC). Kẻ DM vuông góc với BC tại M
a) Chứng minh tam giác DAB= tam giác DMB
b) Chứng minh DK=Dc và AD<DC
1 a, so sánh ABC và ACB . tính góc ABHa, so sánh ABC và ACB . tính góc ABH
b, vẽ AD là p.g củcho tam giác ABC có góc A =600 , AB < AC , đường cao BH [ H thuộc AC]a góc A [ D thuộc BC] , vẽ BI vuông góc AD tại I . chứng minh tam giác AIB =tam giác BHA
c, tia BI cắt AC ở E . chứng minh tam giác ABE đều
d, chứng minh DC >DB
2
TAM GIÁC ABC VUÔNG TẠI A ĐƯỜNG PHÂN GIÁC BD . KẺ AE VUÔNG BD , AE CẮT BC Ở K
a, BIẾT AC = 8cm AB=6cm . TÍNH BC
b, TAM GIÁC ABK LÀ TAM GIÁC GÌ
c, CHỨNG MINH DK VUÔNG BC .
d, KẺ AE VUÔNG BC. CHỨNG MINH AK LÀ TIA PHÂN GIÁC CỦA GÓC HAC
3
CHO TAM ABC CÓ AB=3cm AC=4cm BC=5cm
a, TAM GIÁC ABC LÀ TAM GIÁC GÌ
b, VẼ BD LÀ PHÂN GIÁC CỦA GÓC B. TRÊN CẠNH BC LẤY DIỂM ED TẠI F. CHỨNG MINH AE SONG SONG FC
c, CHỨNG MINH TAM GIÁC ABH = TAM GIÁC ACH
b, vẽ AD là p.g củcho tam giác ABC có góc A =600 , AB < AC , đường cao BH [ H thuộc AC]a góc A [ D thuộc BC] , vẽ BI vuông góc AD tại I . chứng minh tam giác AIB =tam giác BHA
c, tia BI cắt AC ở E . chứng minh tam giác ABE đều
d, chứng minh DC >DB
GIÚP MIK LÀM 3 BÀI NÀY NHA MÌNH CẢM ƠN
Cho tam giác ABC vuông tại A có AB<AC , kẻ đường phân giác BD của ABC ( D thuộc AC). Kẻ DM vuông góc với BC tại M.
a) Chứng minh tam giác DAB= tam giác DMB
b) Chứng minh AD<DC
c) Gọi K là giao điểm của đường thẳng DM và đường thẳng AB , đường thẳng BD cắt KC tại N. Chứng minh BN vuông góc với KC và tam giác KDC cân tại B
3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :
a) BD là đường trung trực AE
b) DF=DC
c) AD<DC
4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng:
a) tam giác ABE = tam giác HBE
b) BE là đường trung trực của đoạn thẳng AH.
c) EK = EC và AE < EC
5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.
Chứng minh :
a) AM là tia phân giác góc A
b) tam giác ABD = tam giác ACD
c) tam giác BCD là tam giác cân
6. Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a) Chứng minh : AD=DH
b) So sánh độ dài hai cạnh AD và DC
c) Chứng minh tam giác KBC là tam giác cân
3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :
a) BD là đường trung trực AE
b) DF=DC
c) AD<DC
4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng:
a) tam giác ABE = tam giác HBE
b) BE là đường trung trực của đoạn thẳng AH.
c) EK = EC và AE < EC
5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.
Chứng minh :
a) AM là tia phân giác góc A
b) tam giác ABD = tam giác ACD
c) tam giác BCD là tam giác cân
6. Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a) Chứng minh : AD=DH
b) So sánh độ dài hai cạnh AD và DC
c) Chứng minh tam giác KBC là tam giác cân
3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :
a) BD là đường trung trực AE
b) DF=DC
c) AD<DC
4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng:
a) tam giác ABE = tam giác HBE
b) BE là đường trung trực của đoạn thẳng AH.
c) EK = EC và AE < EC
5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.
Chứng minh :
a) AM là tia phân giác góc A
b) tam giác ABD = tam giác ACD
c) tam giác BCD là tam giác cân
6. Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a) Chứng minh : AD=DH
b) So sánh độ dài hai cạnh AD và DC
c) Chứng minh tam giác KBC là tam giác cân
cho tam giác ABC vuông tại A tia phân giác góc ABC cat AC tại D vẽ DE vuông góc với BC(E thuộc BC) AE cắt BD tại F đường thẳng vuông góc với BC tại B cắt CA tại M gọi I là giao điểm bất kỳ thuộc đường thẳng AB trên tia đối AB lấy J sao cho AJ=BI
a) chứng minh tam giác ABD = tam giác EBD và AD = DE
b) chứng minh AD<DC
c) chứng minh CF là trung tuyến của tam giác ACE
d) chứng minh RJ vuông góc JC
cho tam giác ABC vuông tại A; BD là phân giác của góc B ( D thuộc AC) trên tia BC lấy điểm E sao cho BA=BE
a; chứng minh các tam giác ABD và EBD bằng nhau
b; chứng minh rằng BD là đường trung trực của AE
c; chứng minh AD < DC
d; từ C kẻ đường thẳng CF vuông góc với đường thẳng BD ( F thuộc BD) chứng minh rằng các đường thẳng AB, DECF đồng qui
Cho tam giác ABC vuông tại A, phân giác BD (D thuộc AC). Vẽ DH vuông góc BC tại H.
a. Chứng minh tam giác ABD=tam giác HBD
b. E là giao điểm của đường thẳng AB và đường thẳng HD
Chứng minh DC = DE
c. Chứng minh AH song song CE.
d. Phân giác góc ACB cắt BD tại I. Kẻ IM vuông góc AB (M thuộc AB).
CHứng minh: AB+AC-BC=2AM.