Cho tam giác ABC vuông tại A. Đường phân giác BD ( D thuộc AC). Kẻ DH vuông góc với BC ( H thuộc BC ). a,CMR:tam giác ABD và tam giác HBD b,so sánh AD & DC
Cho tam giác ABC vuông tại A , đường phân giác BD [ D thuộc EC] . Thừ D kẻ DH vuông góc với BC .
a, Chứng minh rằng tam giác ABD = tam giác HBD
b, So sánh AD và BC .
c, Gọi k là giao điểm của AB và DH , I là trung điểm của KC . Chứng minh điểm BDI chẳng hạn.
Cho tam giác ABC vuông tại A, từ góc B kẻ tia phân giác cắt AC tại D. Kẻ DH vuông góc với cạnh BC ( H thuộc BC). K là giao điểm của hai cạnh AB và DH. Chứng minh rằng.
a) Tam giác ABD và tam giác HBD
b) BD vuông góc với KC
c) So sánh: DK và DH
cho tam giác ABC vuông tại A coa AB=AC=5cm đường phân giác BD(D thuộc AC ) . kẻ DH vuông góc với BC tại H .a) tính độ dài cạnh BC b) chứng minh tam giác ABD = tam giác HBD và BD là đường trung trực của AH c) trên cạnh AB lấy E sao cho AC=AD . đường vuông góc với BD kẻ từ E cắt BC ở G . chứng minh GH=HC
cho tam giác ABC vuông tại A , tia phân giác BD của góc ABC cắt AC tại D . Vẽ DH vuông góc với BC ( H thuộc BC ) .
a) Chứng minh rằng tam giác ABD = tam giác HBD . Từ đó suy ra BD là trung trực của AH
b) Chứng minh AD < DC
Cho tam giác ABC vuông tại A. Đường phân giác BD. Kẻ DH vuông góc với BC (H thuộc BC). Gọi K là giao điểm của AB và HD. Chứng minh rằng :
a) Tam giác ABD = tam giác HBD
b) BD vuông góc KC
c) DK=Dc
Cho tam giác ABC vuông tại a, đường phân giác BD, kẻ DE vuông góc với BC (E thuộc BC). Chứng minh:
a)Tam giác ABD=tam giác EBD;
b)so sánh DA và DB;
c)BD vuông góc với AE;
d)AD<DC;
e)Kẻ CK vuông góc với BD(K thuộc BD). Chứng minh ED,CK,AB cùng đi qua một điểm.
Cho tam giác ABC vuông tại A .Đường phân giác BD. Kẻ DH vuông góc với BC (H thuộc BC).Gọi K là giao điểm của AB và HD.CMR:
a,Tam giác ABD=tam giác HBD
b.BD vuông góc với CK
c,DK=DC
Cho tam giác ABC vuông tại A .Đường phân giác BD. Kẻ DH vuông góc với BC (H thuộc BC).Gọi K là giao điểm của AB và HD.CMR:
a,Tam giác ABD=tam giác HBD
b.BD vuông góc với CK
c,DK=DC