Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ăn CHơi Éo sỢ mƯa rƠi
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 4 2022 lúc 17:02

Bài toán này dựa trên bài toán mà bạn đã đăng hôm trước: nếu \(m^2+n^2\) chia hết cho 7 thì cả m và n đều chia hết cho 7.

Đặt \(\left\{{}\begin{matrix}5a+2b=m^2\\2a+5b=n^2\end{matrix}\right.\) 

\(\Rightarrow7\left(a+b\right)=m^2+n^2\)

\(\Rightarrow m^2+n^2⋮7\)

\(\Rightarrow m;n\) đều chia hết cho 7

\(\Rightarrow m^2;n^2\) đều chia hết cho 49

\(\Rightarrow\left\{{}\begin{matrix}5a+2b⋮49\\2a+5b⋮49\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3\left(a-b\right)⋮49\\7\left(a+b\right)⋮49\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a-b⋮7\\a+b⋮7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2a⋮7\\2b⋮7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a⋮7\\b⋮7\end{matrix}\right.\) (đpcm)

Lê Xuân Đức
Xem chi tiết
Hoàng Lê Bảo Ngọc
3 tháng 1 2017 lúc 11:53

Bài 2. a/ \(1\le a,b,c\le3\)  \(\Rightarrow\left(a-1\right).\left(a-3\right)\le0\) , \(\left(b-1\right)\left(b-3\right)\le0\)\(\left(c-1\right).\left(c-3\right)\le0\)

Cộng theo vế : \(a^2+b^2+c^2\le4a+4b+4c-9\)

\(\Rightarrow a+b+c\ge\frac{a^2+b^2+c^2+9}{4}=7\)

Vậy min E = 7 tại chẳng hạn, x = y = 3, z = 1

b/ Ta có : \(x+2y+z=\left(x+y\right)+\left(y+z\right)\ge2\sqrt{\left(x+y\right)\left(y+z\right)}\) 

Tương tự : \(y+2z+x\ge2\sqrt{\left(y+z\right)\left(z+x\right)}\) , \(z+2y+x\ge2\sqrt{\left(z+y\right)\left(y+x\right)}\)

Nhân theo vế : \(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge8\left(x+y\right)\left(y+z\right)\left(z+x\right)\) hay

\(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge64\)

trần bảo trân
2 tháng 1 2017 lúc 21:32

chẵng biết

Lê Xuân Đức
2 tháng 1 2017 lúc 21:41

khó lắm ai làm được tui chuyển 10k qa tài khoản ngân hàng =) nói là làm

Kyle Thompson
Xem chi tiết
Nguyễn Linh Chi
6 tháng 10 2019 lúc 17:45

Ta có: 

\(a^2+b^2+4=2ab+4a+4b\)

\(\Rightarrow a^2+b^2+4-2ab-4b+4a=8a\)

\(\Rightarrow\left(a-b+2\right)^2=8a\)

\(\Rightarrow\frac{a}{2}=\frac{\left(a-b+2\right)^2}{16}=\left(\frac{a-b+2}{4}\right)^2\)

=> \(\frac{a}{2}\)là số chính phương.

Kyle Thompson
6 tháng 10 2019 lúc 17:48

Sao lại bằng 8a chỗ đấy ạ. Bạn giải thích hộ mình với

Nguyễn Linh Chi
6 tháng 10 2019 lúc 17:51

\(a^2+b^2+4=2ab+4a+4b\)

Chuyển vế:

\(a^2+b^2+4-2ab-4b=4a\)

Thêm 4a vào 2 vế

\(a^2+b^2+4-2ab-4b+4a=4a+4a\)

\(a^2+b^2+4-2ab-4b+4a=8a\)

Trà Nhật Đông
Xem chi tiết
Yuri Ai
Xem chi tiết
Sy Tai Nguyen
Xem chi tiết
Trần Thị Loan
23 tháng 7 2015 lúc 23:24

2a2 + a = 3b+ b => 2a2 - 2b2 + a - b = b2 => 2.(a - b).(a + b) + (a - b) = b2

=> (a - b). (2a + 2b + 1) = b2   (1)

Gọi d = ƯCLN (a-b; 2a + 2b + 1)

=> a - b chia hết cho d và  2a + 2b + 1 chia hết cho d

=> b2 =  (a - b). (2a + 2b + 1) chia hết cho d2

=> b chia hết cho d

Lại có  2(a - b) -  (2a + 2b + 1) chia hết cho d =>  -4b - 1   chia hết cho d

=> 1 chia hết cho d => d =1 => a - b và 2a + 2b + 1 nguyên tố cùng nhau  (2)

(1)(2) => a- b và 2a + 2b + 1 đều là số chính phương

Thanh Tùng Phạm Văn
6 tháng 12 2016 lúc 20:31

có rùi nè, 4b đó: Cho a+b+c=0. 

Tính: 1/(b^2+c^2-a^2)+1/(a^2+c^2-b^2)+1/(a^2+b^2-c^2). đó bài này đó

VUX NA
Xem chi tiết
Hồng Phúc
5 tháng 9 2021 lúc 0:46

Dấu BĐT bị ngược, sửa đề: \(\dfrac{1}{a^4+b^4+2ab^4}+\dfrac{1}{a^2+b^4+2a^2b^2}\le\dfrac{1}{2}\).

Đặt \(b^2=x\left(x>0\right)\Rightarrow a+x=2ax\).

Khi đó ta cần chứng minh:

\(\dfrac{1}{a^4+x^2+2ax^2}+\dfrac{1}{a^2+x^4+2a^2x}\le\dfrac{1}{2}\)

Áp dụng BĐT AM-GM:

\(\dfrac{1}{a^4+x^2+2ax^2}+\dfrac{1}{a^2+x^4+2a^2x}\)

\(\le\dfrac{1}{2a^2x+2ax^2}+\dfrac{1}{2ax^2+2a^2x}\)

\(=\dfrac{2}{2ax\left(a+x\right)}\)

\(=\dfrac{1}{ax\left(a+x\right)}\)

\(=\dfrac{1}{2a^2x^2}\)

Ta thấy: \(a+x\ge2\sqrt{ax}\)

\(\Leftrightarrow2ax\ge2\sqrt{ax}\)

\(\Leftrightarrow ax-\sqrt{ax}\ge0\)

\(\Leftrightarrow\sqrt{ax}\left(\sqrt{ax}-1\right)\ge0\)

\(\Leftrightarrow\sqrt{ax}\ge1\)

\(\Rightarrow ax\ge1\)

Khi đó: \(\dfrac{1}{2a^2x^2}\le\dfrac{1}{2}\)

\(\Rightarrow\dfrac{1}{a^4+x^2+2ax^2}+\dfrac{1}{a^2+x^4+2a^2x}\le\dfrac{1}{2}\)

Hay \(\dfrac{1}{a^4+b^4+2ab^4}+\dfrac{1}{a^2+b^4+2a^2b^2}\le\dfrac{1}{2}\).

Nguyễn Khắc Quang
Xem chi tiết
Nguyễn Minh Đăng
4 tháng 2 2021 lúc 20:17

Ta có: \(2a^2+a=3b^2+b\)

\(\Leftrightarrow\left(2a^2-2b^2\right)+\left(a-b\right)=b^2\)

\(\Leftrightarrow\left(2a+2b\right)\left(a-b\right)+\left(a-b\right)=b^2\)

\(\Leftrightarrow\left(2a+2b+1\right)\left(a-b\right)=b^2\)

*CM 2a+2b+1 và a-b nguyên tố cùng nhau

=> 2a+2b+1 cũng là 1 SCP

Khách vãng lai đã xóa
Đoàn Đức Hà
4 tháng 2 2021 lúc 21:13

Ta có: 

\(2a^2+a=3b^2+b\)

\(\Leftrightarrow2a^2-2b^2+a-b=b^2\)

\(\Leftrightarrow\left(a-b\right)\left(2a+2b+1\right)=b^2\)

Ta có: 

Đặt \(d=\left(a-b,2a+2b+1\right)\).

\(\Rightarrow\hept{\begin{cases}a-b⋮d\\2a+2b+1⋮d\end{cases}}\Rightarrow\left(a-b\right)\left(2a+2b+1\right)=b^2⋮d^2\Rightarrow b⋮d\)

\(\Rightarrow\left(a-b\right)+b=a⋮d\)

\(\Rightarrow\left(2a+2b+1\right)-2a-2b=1⋮d\Rightarrow d=1\).

Do đó \(a-b,2a+2b+1\)là hai số chính phương. 

Khách vãng lai đã xóa
Do Thi Len
8 tháng 7 lúc 23:02

2a2 + a = 3b+ b => 2a2 - 2b2 + a - b = b2 => 2.(a - b).(a + b) + (a - b) = b2

=> (a - b). (2a + 2b + 1) = b2   (1)

Gọi d = ƯCLN (a-b; 2a + 2b + 1)

=> a - b chia hết cho d và  2a + 2b + 1 chia hết cho d

=> b2 =  (a - b). (2a + 2b + 1) chia hết cho d2

=> b chia hết cho d

Lại có  2(a - b) -  (2a + 2b + 1) chia hết cho d =>  -4b - 1   chia hết cho d

=> 1 chia hết cho d => d =1 => a - b và 2a + 2b + 1 nguyên tố cùng nhau  (2)

(1)(2) => a- b và 2a + 2b + 1 đều là số chính phương