tính tổng của hai đa thức:
\(P=x^5+xy+0,3y^2-x^2y^3-z\)
Tính tổng của hai đa thức :
a) \(M=x^2y+5xy^3-7,5x^3y^2+x^3\) và \(N=3xy^3-x^2y+5,5x^3y^2\)
b) \(P=x^5+xy+0,3y^2-x^2y^3-2\) và \(Q=x^2y^3+5-1,3y^2\)
a) Ta có M = x2y + 0,5xy3 – 7,5x3y2 + x3 và N = 3xy3 – x2y + 5,5x3y2.
=> M + N = x2y + 0,5xy3 – 7,5x3y2 + x3 + 3xy3 – x2y + 5,5x3y2
= – 7,5x3y2 + 5,5x3y2 + x2y – x2y + 0,5xy3 + 3xy3 + x3
= -2x3y2 + 3,5xy3 + x3
b) P = x5 + xy + 0,3y2 – x2y3 – 2 và Q = x2y3 + 5 – 1,3y2.
=> P + q = (x5 + xy + 0,3y2 – x2y3 – 2) + (x2y3 + 5 – 1,3y2)
= x5 + xy + 0,3y2 – x2y3 – 2 + x2y3 + 5 – 1,3y2
= x5 – x2y3 + x2y3 + 0,3y2 – 1,3y2 + xy - 2 + 5
= x5 - y2 + xy + 3.
Tính tổng của hai đa thức a)M=x²y+0,5xy³-7,5x³y²+x³ và N=3xy³-x²y +5,5x³y² b)P=x⁵+xy+0,3y²-x²y²-2 và N=x²y²+5-y²
a: \(M=x^2y+\dfrac{1}{2}xy^3-\dfrac{15}{2}x^3y^2+x^3\)
\(N=3xy^3-x^2y+\dfrac{11}{2}x^3y^2\)
Do đó: \(M+N=\dfrac{7}{2}xy^3-2x^2y^2+x^3\)
b: \(P=x^3+xy^2+y^2-x^2y^2-2\)
\(N=x^2y^2+5-y^2\)
Do đó: \(P+N=x^3+xy^2+3\)
câu 1. (1,5đ) cho hai đa thức sau: P=x^2y+2x^3-xy^2+5 Q=x^3+xy^2-2x^2y-6 a) tính tổng của đa thức p và q. b) tìm đa thức n sao cho q = p + n.
a) P + Q = (x² + 2x³ - xy² + 5) + (x³ + xy² - 2x²y - 6)
= x² + 2x³ - xy² + 5 + x³ + xy² - 2x²y - 6
= (2x³ + x³) + x² + (-xy² + xy²) - 2x²y + (5 - 6)
= 3x³ + x² - 2x²y - 1
b) Q = P + N
N = Q - P
= (x³ + xy² - 2x²y - 6) - (x² + 2x³ - xy² + 5)
= x³ + xy² - 2x²y - 6 - x² - 2x³ + xy² - 5
= (x³ - 2x³) + (xy² + xy²) - 2x²y - x² + (-6 - 5)
= -x³ + 2xy² - 2x²y - x² - 11
Vậy N = -x³ + 2xy² - 2x²y - x² - 11
Tính tổng hai đa thức P và Q rồi tìm bậc của đa thức tổng
Tính tổng của 2 đa thức
P = x5 + xy + 0,3y2 – x2y3 – 2 và Q = x2y3 + 5 – 1,3y2.
P = x5 + xy + 0,3y2 – x2y3 – 2 và Q = x2y3 + 5 – 1,3y2.
=> P + q = (x5 + xy + 0,3y2 – x2y3 – 2) + (x2y3 + 5 – 1,3y2)
= x5 + xy + 0,3y2 – x2y3 – 2 + x2y3 + 5 – 1,3y2
= x5 – x2y3 + x2y3 + 0,3y2 – 1,3y2 + xy - 2 + 5
= x5 - y2 + xy + 3.
b) P = x5 + xy + 0,3y2 – x2y3 – 2 và Q = x2y3 + 5 – 1,3y2.
=> P + q = (x5 + xy + 0,3y2 – x2y3 – 2) + (x2y3 + 5 – 1,3y2)
= x5 + xy + 0,3y2 – x2y3 – 2 + x2y3 + 5 – 1,3y2
= x5 – x2y3 + x2y3 + 0,3y2 – 1,3y2 + xy - 2 + 5
= x5 - y2 + xy + 3.
Tính tổng A+B và hiệu A-B của hai đa thức A,B trong các trường hợp sau:
a) A=x+2y và B=x-2y
b)A=2x^2y-x^3-xy^2+1và B =x^3+xy^2-2
c) A=x^2-2yz+z^2 và B=3yz+5x^2-z^2
HELPPPPPPPPPPP!!!!!!!!!
a: A+B=x+2y+x-2y=2x
A-B=x+2y-x+2y=4y
b: A+B
=2x^2y-x^3-xy^2+1+x^3+xy^2-2
=2x^2y-1
A-B
=2x^2y-x^3-xy^2+1-x^3-xy^2+2
=-2x^3+2x^2y-2xy^2+3
c: A+B
=x^2-2yz+z^2+3yz+5x^2-z^2
=6x^2+yz
A-B
=x^2-2yz+z^2-3yz-5x^2+z^2
=-4x^2+2z^2-5yz
Tính tổng của hai đa thức sau :
a) \(5x^2y-5xy^2+xy\) và \(xy-x^2y^2+5xy^2\)
b) \(x^2+y^2+z^2\) và \(x^2-y^2+z^2\)
a) (5x2y-5xy2+xy) + (xy-x2y2+5xy2)
= 5x2y-5xy2+xy+xy-x2y2+5xy2
= 5x2y+(5xy2-5xy2)+(xy+xy)-x2y2
= 5x2y+2xy-x2y2
b) (x2+y2+z2) + (x2-y2+z2)
= x2+y2+z2+x2-y2+z2
= (x2+x2)+(y2-y2)+(z2+z2)
= 2x2+2z2
a)( \(5x^2y\)\(-\) \(5xy^2\) \(+\) \(xy\)) + (\(xy\) \(-\) \(x^2y^2\) \(+\) \(5xy^2\))
= \(5x^2y-5xy^2+xy+xy-x^2y^2+5xy^2\)
= \(5x^2y+2xy-x^2y^2\)
b) \(\left(x^2+y^2+z^2\right)+\left(x^2-y^2+z^2\right)\)
= \(x^2+y^2+z^2+x^2-y^2+z^2\)
=\(2x^2+2z^2\)
=\(2\left(x+z\right)^2\)
Câu 1: Đa thức -2x^2y +xy + 1 đc viết thành tổng của 2 đa thức nào.
Câu 2 : Đa thức x^2y^2 + 2xy -3 đc viết thành tổng của 2 đa thức nào.
Câu 3 : Đa thức -2x^2y + xy +1 đc viết thành hiệu của 2 đa thức nào.
Câu 4 : Đa thức x^2y^2 -2xy +3 đc viết thành hiệu của 2 đa thức nào.
Câu 1:
-2x²y + xy + 1 = -2x²y + (xy + 1)
Vậy -2x²y + xy + 1 được viết thành tổng của hai đa thức: -2x²y và xy + 1
Câu 2:
x²y² + 2xy - 3 = x²y² + (2xy - 3)
Vậy x²y² + 2xy - 3 được viết thành tổng của hai đa thức: x²y² và 2xy - 3
Câu 3:
-2x²y + xy + 1 = (xy + 1) - 2x²y
Vậy -2x²y + xy + 1 được viết thành hiệu của hai đa thức: xy + 1 và 2x²y
Câu 4:
x²y² - 2xy + 3 = (x²y² + 3) - 2xy
Vậy x²y² - 2xy + 3 được viết thành hiệu của hai đa thức: x²y² + 3 và 2xy
Tính tổng của hai đa thức:
\(P=x^2y+x^3-xy^2+3\)và \(Q=x^3+xy^2-xy-6\)
P+Q=x2y+x3-xy2+3+x3+xy2-xy-6
=-xy2+xy2+x3+x3+3-6+x2y
=2x3-3+x2y
vậy P+Q=2x3-3+x2y
Cho hai đa thức:\(A=x^2y+2xy^2-7\left(-xy\right)^2+x^4\)và \(B=5x^2y^2-2y^2x-yx^2-3x^4-1.\)
a)Tinhs A+B;2A-B.
b)Tính giá trị lớn nhất của đa thức A+B.
c)Tìm x;y\(\in\)Z để tổng A và B có giá trị bằng -3.