ChoABC nhọn. Gọi M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB=MD.
a) Chứng minh MBC=MDA.
b) Chứng minh BC//AD.
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD.
a) Chứng minh AD = BC.
b) Chứng minh CD vuông góc với AC
c) chứng minh BC//AD
a: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
=>ABCD là hbh
=>AB=CD và AB//CD
b: AB//CD
AB vuông góc AC
=>CD vuông góc AC
c: ABCD là hbh
=>BC//AD
9. Cho tam giác ABC nhọn, AB < AC. M là trung điểm cạnh AC. Trên tia đối của tia MB lấy điểm D sao cho MB =
MD.
a) Chứng minh rằng ΔBMC = ΔDMA .
b) Kẻ AH ⊥ BC,H ∈BC . Chứng minh AH ⊥ AD .
c) Chứng minh A
!BC = CD!A
d) Kẻ CK ⊥ AD,K ∈AD . Chứng minh BH = DK và H, M, K thẳng hàng.
cho tam giác ABC . gọi M là trung điểm cũa AC trên tia đối của tia MB , lấy điểm d sao cho MB = MD : chứng minh
AD = BC ; AD // BC
vẽ hình nx
cho tam giác ABC có góc a bằng 90 độ. gọi M là trung điểm của AC. trên tia đối của tia MB lấy điểm D sao cho MB = MD.
a, chứng minh rằng tam giác ABM bằng tam giác CDM.
b, chứng minh DC vuông góc với AC, từ đó chứng minh AB song song với CD
c, lấy K là trung điểm của BC .trên tia AK lấy điểm E sao cho K là trung điểm của AE. chứng minh rằng C là trung điểm của DE.
a: Xét ΔABM và ΔCDM có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
Do đó: ΔABM=ΔCDM
b: ΔABM=ΔCDM
=>\(\widehat{MAB}=\widehat{MCD}=90^0\)
=>DC\(\perp\)AC
mà AC\(\perp\)AB
nên AB//DC
c: ΔMAB=ΔMCD
=>AB=CD
Xét ΔKAB và ΔKEC có
KA=KE
\(\widehat{AKB}=\widehat{EKC}\)
KB=KC
Do đó: ΔKAB=ΔKEC
=>AB=EC
ΔKAB=ΔKEC
=>\(\widehat{KAB}=\widehat{KEC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//EC
AB//EC
AB//CD
CD,EC có điểm chung là C
Do đó: E,C,D thẳng hàng
AB=EC
AB=CD
Do đó: EC=CD
Ta có: E,C,D thẳng hàng
EC=CD
Do đó: C là trung điểm của ED
Cho tam giác ABC vuông tại A. Gọi M và N lần lượt là trung điểm của các cạnh AC và AB. Trên tia đối của tia
MB lấy điểm D sao cho MD = MB.
1. Chứng minh ∆AMB = ∆CMD và CDAC.
2. Chứng minh AD = BC và AD // BC.
3. Trên tia đối của tia NC lấy điểm E sao cho NE = NC, chứng minh A là trung điểm của ED.
Bài này bạn tự kẻ hình giúp mình nha!
1. Xét tam giác AMB và tam giác CMD có:
AM = CM ( M là trung điểm của AC )
AMB = CMD ( 2 góc đối đỉnh )
BM = DM (gt)
=> tam giác AMB = tam giác CMD (c.g.c) (dpcm)
=> BAM = DCM ( 2 góc tương ứng)
=> DCM = 90o => DC vuông góc với MC hay CD vuông góc với AC ( dpcm )
2.
Xét tam giác AMD và tam giác CMB có:
AM = CM ( Theo 1.)
AMD = CMB ( 2 góc đối đỉnh )
DM = BM (gt)
=> tam giác AMD = tam giác CMB ( c.g.c)
=> AD = BC (2 cạnh tương ứng) (dpcm)
=> ADM = CBM (2 góc tương ứng)
Mà góc ADM và và góc CBM ở vị trí so le trong
=> AD // BC (dpcm)
3. Xét tam giác AEN và tam giác BCN có:
AN=BN ( N là trung điểm của AB)
ANE = BNC ( 2 góc đối đỉnh )
NE = NC (gt)
=> Tam giác AEN = tam giác BCN ( c.g.c)
=> AE = BC ( 2 cạnh tương ứng ) (1)
=> EAN = CBN ( 2 góc tương ứng ) mà EAN và CBN ở vị trí so le trong => AE // BC (2)
Theo 2. ta có : +) AD=BC (3)
+) AD // BC (4)
Từ (1) và (3) Suy ra AE = AD (5)
Từ (2) và (4) Suy ra A,E,D thẳng hàng (6)
Từ (5) và (6) Suy ra A là trung điểm của ED (dpcm)
sorry bn nha
mk lm xong rùi
Cho tam giác ABC(AB<AC) có M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho MB=MD
a, Chứng minh tam giác AMB=tam giác CMD
b, Chứng minh AD=CB và AD//CB
c, Gọi N là trung điểm của A. Trên tia đối của tia NC lấy điểm K sao cho NC=NK. Chứng minh D,A,K thẳng hàng
UKM THÌ CÓ BÀI TỰA VẬY BẠN SO ĐC CHỨ
a) Xét AIM và BIC có:IA = IB (do I là trung điểm của AB);AIM BIC(hai góc đối đỉnh);IM = IC (giảthiết).Do đó AIM = BIC (c.g.c)Suy ra AM = BC (hai cạnh tương ứng) và MAI CBI(hai góc tương ứng) Mà MAI, CBIlà hai góc ởvịtrí so le trong nên AM // BC.b) Xét ANE và CBE có:EA = EC (do E là trung điểm của AC);AEN CEB(hai góc đối đỉnh);EN= EB(giảthiết).Do đó ANE = CBE (c.g.c)Suy ra NAE BCE(hai góc tương ứng)Mà NAE, BCElà hai góc ởvịtrí so le trong nên AN// BC.c) Ta có AM // BC (theo câu a) và AN // BC (theo câu b)Do đó qua điểm A có hai đường thẳng song song với BC nên theo tiên đềEuclid, hai đường thẳng AM và AN trùng nhau hay ba điểm A, M, N thẳng hàng.Lại có ANE = CBE (theo câu b) nên AN = CB (hai cạnh tương ứng)Mặt khác AM = BC (theo câu a)Do đó AM = AN (cùng bằng BC) Mà ba điểm A, M, N thẳng hàng nên A là trung điểm của MN.a: Xét ΔAMB và ΔCMD có
MA=MC
góc AMB=góc CMD
MB=MD
Do đó: ΔAMB=ΔCMD
b: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
nên ABCD là hình bình hành
=>AB//CD và AB=CD
c: Xét tứ giác AKBC có
N là trung điểm chung của AB và KC
nên AKBC là hình bình hành
=>AK//BC
mà AD//BC
nên D,A,K thẳng hàng
Cho tam giác ABC(AB<AC) có M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho MB=MD
a, Chứng minh tam giác AMB=tam giác CMD
b, Chứng minh AD=CB và AD//CB
c, Gọi N là trung điểm của A. Trên tia đối của tia NC lấy điểm K sao cho NC=NK. Chứng minh D,A,K thẳng hàng
d, Vẽ CE vuông AD (E thuộc AD) và AF vuông BC (F thuộc BC). Gọi F là giao điểm của MA và CE
vẽ giúp mình cái hình nhé!!!!!!!
Cho ABC, M là trung điểm AC, N là trung điểm AB. Trên tia đối của tia MB lấy điểm D sao cho MD = MB. Trên tia đối của tia NC lấy điểm E sao cho NE = NC. Chứng minh: a) AD = BC b) AD // BC c) A là trung điểm của DE
a: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AD=BC
Bài 1. Cho ABC, M là trung điểm AC, N là trung điểm AB. Trên tia đối của tia MB lấy điểm D sao cho MD = MB. Trên tia đối của tia NC lấy điểm E sao cho NE = NC. Chứng minh: a) AD = BC b) AD // BC c) A là trung điểm của DE
a: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AD=BC