Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kim Ngọc Linh
Xem chi tiết
Lê Thanh Nga
Xem chi tiết
Võ Trọng Hòa
Xem chi tiết
Nguyen Thi Mai
19 tháng 5 2016 lúc 8:28

 Biến đổi bt tương đương : (x^2-1)/2 =y^2 
Ta có: vì x,y là số nguyên dương nên 
+) x>y và x phải là số lẽ. 
Từ đó đặt x=2k+1 (k nguyên dương); 
Biểu thức tương đương 2*k*(k+1)=y^2 (*); 
Để ý rằng: 
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là : 
{1,y, y^2} ; 
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1; 
=>x=3. 
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).

Võ Trọng Hòa
19 tháng 5 2016 lúc 8:29

Nguyễn Thị Mai copy trên mạng,ko tính

Hoàng Phúc
19 tháng 5 2016 lúc 8:56

x2-2y2=1

=>x2-1=2y2

=>x2-12=2y2

=>(x-1)(x+1)=2y2=y.2y

+)(x-1)(x+1)=2y2

=>x-1=2 và x+1=y2

=>x=3 và x+1=y2

Có x=3,thay vào x+1=y2=>3+1=y2=>y2=4=>y E {-2;2},Mà y là số nguyên tố=>y=2

+)(x-1)(x+1)=y.2y

=>x-1=y và x+1=2y

=>x=y+1 và x+1=2y

Có x=y+1,thay vào x+1=2y => (y+1)+1=2y=>y+2=2y=>2y-y=2=>y=2

do đó x=2+1=>x=3

Vậy tất cả cặp số nguyên tố (x;y) thỏa mãn đề bài là (3;2)

cách này dễ hiểu hơn nè

 

Linh Trần Thị Thùy
Xem chi tiết
phương bích
Xem chi tiết
Rhider
Xem chi tiết
MI NA MAI
18 tháng 10 2023 lúc 19:48

Sorry bạn nhưng mình từng giải bài này

Ta có phương trình đơn giản lại tương tự phương trình Pell như sau: $x^2 - 6y^2 = -1$ Ta có thể giải phương trình này bằng phương pháp Pell như sau: Giả sử $x_1, y_1$ là một nghiệm của phương trình, ta có thể tìm được một nghiệm khác bằng cách sử dụng công thức sau: $x_{n+1} = 5x_n + 12y_n$ $y_{n+1} = 2x_n + 5y_n$ Với $x_1 = 5, y_1 = 1$, ta có thể tìm được các giá trị $x$ và $y$ bằng cách lần lượt tính các giá trị $x_n$ và $y_n$ bằng công thức trên cho đến khi tìm được một nghiệm thỏa mãn $x^2 - 6y^2 = -1$. $x_1 = 5, y_1 = 1$ $x_2 = 29, y_2 = 5$ $x_3 = 169, y_3 = 29$ $x_4 = 985, y_4 = 169$ $x_5 = 5741, y_5 = 985$ Vậy $(x, y) = (5741, 985)$ là một nghiệm của phương trình $x^2 - 6y^2 = -1$. Ta kiểm tra xem $x$ và $y$ có phải đều là số nguyên tố hay không. Ta nhận thấy rằng $x$ chia hết cho 7, do đó $x$ không phải là số nguyên tố. Tuy nhiên, ta thấy rằng $y$ là số nguyên tố. Vì vậy, đáp án của bài toán là $(x, y) = (5741, 985)$ với $y$ là số nguyên tố.

Trần Trọng Đức
Xem chi tiết
Nguyễn Linh Chi
15 tháng 1 2020 lúc 14:45

d. Câu hỏi của Black - Toán lớp 7 - Học toán với OnlineMath

Khách vãng lai đã xóa
22222
Xem chi tiết
Akai Haruma
20 tháng 9 2023 lúc 20:23

Lời giải:

$(x-1)(x+1)=6y^2$

$\Leftrightarrow x^2-1=6y^2$

$\Rightarrow x^2=6y^2+1$ lẻ $\Rightarrow x$ lẻ.

Ta biết 1 scp khi chia cho 4 thì dư $0$ hoặc $1$. Vì $x$ là số lẻ nên $x^2$ là scp lẻ $\Rightarrow$ $x^2$ chia $4$ dư $1$

$\Rightarrow 6y^2=x^2-1\vdots 4$

$\Rightarrow y^2\vdots 2$

$\Rightarrow y$ chẵn. Mà $y$ là số nguyên tố nên $y=2$. 

Khi đó $x^2=6y^2+1=6.2^2+1=25$

$\Rightarrow x=5$ (thỏa mãn)

$

Nguyễn Hoài Nam
Xem chi tiết
Lê Đình Nam
24 tháng 4 2016 lúc 20:35

Câu này khó thật đấy!Chịu thôi!

Lê Đình Nam
24 tháng 4 2016 lúc 20:54

Ta có:x^2-2x+1=6y^2-2x+2

          x^2+1-2=6y^2-2x+2x

              x^2-1=6y^2

                 y^2=x^2-1/6

Vì y^2 thuộc ước của x^2-1/6 suy ra y^2 là số chẵn mà y^2 là số chẵn suy ra y=2 

Thay vào ta có:x^2-1/6=4

                       x^2-1=24

                          x^2=25

suy ra x=5.Vậy x=5:y=2 (Thử lại nhé)