Những câu hỏi liên quan
Lenn0xx
Xem chi tiết
Hoàng Thị Ngọc Ánh
Xem chi tiết
Trần Tuấn Hoàng
4 tháng 3 2022 lúc 22:47

-Câu 1,2 của bài này na ná với nhau á, bạn tham khảo:

https://hoc24.vn/cau-hoi/cho-tam-giac-abc-can-tai-a-tren-canh-bc-lay-d-d-khong-trung-b-va-bdbc2-tren-tia-doi-cua-tia-cb-lay-e-sao-cho-bdce-cac-duong-vuong-goc-voi-bc-ke-tu-d-va-e-cat-duong-thang-ab-va-ac-lan-luot-tai.4784314158042

Bình luận (0)
Trần Tuấn Hoàng
5 tháng 3 2022 lúc 9:16

c. -Kẻ tia phân giác của \(\widehat{BAC}\) cắt đường vuông góc với MN (tại I) tại F.

-Xét △ABF và △ACF:

\(AB=AC\) (△ABC cân tại A).

\(\widehat{BAF}=\widehat{CAF}\) (AF là tia phân giác của \(\widehat{BAC}\))

AF là cạnh chung.

\(\Rightarrow\)△ABF=△ACF (c-g-c).

\(\Rightarrow BF=CF\) (2 cạnh tương ứng).

\(\widehat{ABF}=\widehat{ACF}\) (2 góc tương ứng).

-Xét △MIF và △NIF:

\(MI=IN\left(cmt\right)\)

\(\widehat{MIF}=\widehat{NIF}=90^0\)

IF là cạnh chung.

\(\Rightarrow\)△MIF=△NIF (c-g-c).

\(\Rightarrow MF=NF\) (2 cạnh tương ứng).

-Xét △BMF và △CNF:

\(BM=NC\)(△MBD=△NCE)

\(MF=NF\left(cmt\right)\)

\(BF=CF\left(cmt\right)\)

\(\Rightarrow\)△BMF=△CNF (c-c-c).

\(\Rightarrow\widehat{MBF}=\widehat{NCF}\) (2 cạnh tương ứng).

Mà \(\widehat{MBF}=\widehat{MCF}\)(cmt)

\(\Rightarrow\widehat{NCF}=\widehat{MCF}\)

Mà \(\widehat{NCF}+\widehat{MCF}=180^0\) (kề bù)

\(\Rightarrow\widehat{NCF}=\widehat{MCF}=\dfrac{180^0}{2}=90^0\)

\(\Rightarrow\)AB⊥BF tại B.

\(\Rightarrow\) F là giao của đường vuông góc với AB tại B và tia phân giác của góc \(\widehat{BAC}\).

\(\Rightarrow\)F cố định.

-Vậy đường thẳng vuông góc với MN luôn đi qua điểm cố định khi D thay đổi trên đoạn BC.

Bình luận (0)
Bùi Thiên Phước
Xem chi tiết
sjfdksfdkjlsjlfkdjdkfsl
8 tháng 2 2020 lúc 15:24

Tgiac ABC cân tại A => AB = AC và góc B = ACB

Mà góc ACB và góc NCE là 2 góc đối đỉnh => góc ACB = NCE

=> góc NCE = góc B

Xét tgiac MDB và NEC có:

+ góc MDB = NEC

+ BD = CE

+ góc B = NCE (cmt)

=> tgiac MDB = NEC (cgv-gn)

=> MD = NE

Bình luận (0)
 Khách vãng lai đã xóa
Ngọc
Xem chi tiết
Ngọc
28 tháng 2 2016 lúc 10:22

Mk chỉ cần vẽ hình thôi 

Bình luận (0)
bao tram
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 3 2023 lúc 14:05

a: Xét ΔBDM vuông tại D và ΔCEN vuông tại E có

BM=CN

góc DBM=góc ECN=góc ACB

=>ΔBDM=ΔCEN

=>MD=EN

b: Xét tứ giác MDNE có

MD//EN

MD=EN

=>MDNE là hình bình hành

=>MN cắt DE tại trung điểm của mỗi đường

=>I la trung điểm của DE

c: Xét ΔABO vuông tại B và ΔACO vuông tại C có

AO chung

AB=AC
=>ΔABO=ΔACO

=>BO=CO

mà AB=AC
nên AO là trung trực của BC

Bình luận (0)
lâm thị bảo an
Xem chi tiết
Nguyễn Việt Bách
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 8 2023 lúc 14:23

a: Xét ΔMDB vuông tại D và ΔNEC vuông tại E có

BD=CE

góc DBM=góc ECN(=góc ACB)

Do đó; ΔMDB=ΔNEC

=>MD=NE

Xét tứ giác MDNE có

MD//NE

MD=NE

Do đó: MDNE là hình bình hành

=>MN cắt ED tại trung điểm của mỗi đường

=>I là trung điểm chung của MN và ED

b:

Kẻ AH vuông góc BC tại H

ΔABC cân tại A

mà AH là đường cao

nên AH là trung trực của BC

Gọi O là giao của AH với đường vuông góc với MN tại I

=>O nằm trên trung trực của BC

=>OB=OC

Xét ΔOMN có

OI vừa là đường cao, vừa là trung tuyến

=>ΔOMN cân tại O

=>OM=ON

Xét ΔOAB và ΔOAC có

OA chung

AB=AC

OB=OC

Do đó: ΔOAB=ΔOAC

=>góc OBA=góc OCA

Xét ΔOBM và ΔOCN có

OB=OC

BM=CN

OM=ON

Do đó: ΔOBM=ΔOCN

=>góc OBM=góc OCN

=>góc OCN=góc OCA=180/2=90 độ

=>OC vuông góc AC

=>O cố định

Bình luận (0)
Phan Thị Phương Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 4 2021 lúc 22:22

a) Ta có: \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy trong ΔBAC cân tại A)

mà \(\widehat{ACB}=\widehat{ECN}\)(hai góc đối đỉnh)

nên \(\widehat{ABC}=\widehat{ECN}\)

hay \(\widehat{MBD}=\widehat{NCE}\)

Xét ΔMBD vuông tại D và ΔNCE vuông tại E có 

DB=EC(cmt)

\(\widehat{MBD}=\widehat{NCE}\)(cmt)

Do đó: ΔMBD=ΔNCE(cạnh góc vuông-góc nhọn kề)

Suy ra: DM=EN(hai cạnh tương ứng)

Bình luận (0)
anhtu
Xem chi tiết
Freya
14 tháng 7 2017 lúc 17:36

Bài này OC=AN dựa theo lăng trụ đứng và công thức tỉ lệ chiều cao. 

chúc bạn học giỏi

Bình luận (0)