Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vũ ngọc hà vy
Xem chi tiết
Thanh Nhàn ♫
5 tháng 4 2020 lúc 8:27

Đáp án:

Giải thích các bước giải:

 Gọi G là trọng tâm của tgMBC => G trên MI và MG/IM = 2/3

Trên MN lấy điểm K sao cho MK/MN = 2/3 => Điểm K cố định và KG // NI vì MG/MI = MK/MN =2/3

=> ^MGK = ^MIN mà ^MIN không đổi (góc nội tiếp của đường tròn đk AO qua 5 điểm câu a)

=> G thuộc cung tròn cố định chứa ^MGK không đổi  nhận MK là dây

Học tốt

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 11 2018 lúc 9:26

a, Chú ý:  A M O ^ = A I O ^ = A N O ^ = 90 0

b,  A M B ^ = M C B ^ = 1 2 s đ M B ⏜

=> DAMB ~ DACM (g.g)

=> Đpcm

c, AMIN nội tiếp => A M N ^ = A I N ^

BE//AM => A M N ^ = B E N ^

=>   B E N ^ = A I N ^ => Tứ giác BEIN nội tiếp =>  B I E ^ = B N M ^

Chứng minh được:  B I E ^ = B C M ^ => IE//CM

d, G là trọng tâm DMBC Þ G Î MI

Gọi K là trung điểm AO Þ MK = IK = 1 2 AO

Từ G kẻ GG'//IK (G' Î MK)

=>  G G ' I K = M G M I = M G ' M K = 2 3 I K = 1 3 A O  không đổi   (1)

MG' =  2 3 MK => G' cố định (2). Từ (1) và (2) có G thuộc (G'; 1 3 AO)

Tran Tri Hoan
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 2 2021 lúc 22:19

a) Xét tứ giác OMAN có 

\(\widehat{OMA}\) và \(\widehat{ONA}\) là hai góc đối

\(\widehat{OMA}+\widehat{ONA}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: OMAN là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

hay O,M,A,N cùng thuộc một đường tròn(đpcm)

DINH HUY TRAN
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 6 2023 lúc 10:05

a: ΔOBC cân tại O có OI là trung tuyến

nên OI vuông góc BC

góc AMO=góc ANO=góc AIO=90 độ

=>A,M,O,I,N cùng thuộc 1 đường tròn

b: Xét (O) có

AM,AN là tiếp tuyến

=>AM=AN

mà OM=ON

nên OA là trung trực của MN

=>OA vuông góc MN tại H

=>AH*AO=AM^2

Xét ΔAMB và ΔACM có

góc AMB=góc ACM

góc MAB chung

=>ΔAMB đồng dạng với ΔACM

=>AM/AC=AB/AM

=>AM^2=AB*AC=AH*AO

vũ ngọc hà vy
Xem chi tiết
Xuan Mai Do Thi
Xem chi tiết
ntkhai0708
22 tháng 3 2021 lúc 17:53

Xét $(O)$ có: $BC$ là dây cung
$I$ là trung điểm $BC$

$⇒OI ⊥BC$ (tính chất)

Xét $(O)$ có: $AM;AN$ là các tiếp tuyến của đường tròn

$⇒AM⊥OM;AN⊥ON;AM=AN$

Xét tứ giác $AMON$ có:

$\widehat{AMO}=\widehat{ANO}=90^o$

$⇒\widehat{AMO}+\widehat{ANO}=180^o$

$⇒$ Tứ giác $AMON$ nội tiếp (tổng 2 góc đối $=180^o$)

$⇒$ 4 điểm $A;M;O;N$ thuộc 1 đường tròn(1)

Lại có: $\widehat{AIO}=\widehat{ANO}=90^o$

$⇒\widehat{AIO}+\widehat{ANO}=180^o$

$⇒$ Tứ giác $AION$ nội tiếp (Tổng 2 góc đối $=180^o$)

hay 4 điểm $A;I;O;N$ thuộc 1 đường tròn (2)

Từ $(1)(2)⇒$ 5 điểm $A;I;O;M;N$ thuộc 1 đường tròn (đpcm)

b, $K$ sẽ là giao điểm của $MN$ và $AC$

5 điểm $A;I;O;M;N$ thuộc 1 đường tròn

$⇒$ Tứ giác $AMIN$ nội tiếp

$⇒\widehat{AIM}=\widehat{ANM}$ (các góc nội tiếp cùng chắn cung $AM$)

Ta có: $AM=AN⇒\triangle AMN$ cân tại $A$

$⇒\widehat{AMN}=\widehat{ANM}$

$⇒\widehat{AIM}=\widehat{AMN}$

hay $\widehat{AIM}=\widehat{AMK}$

Xét $\triangle AIM$ và $\triangle AMK$ có:

$\widehat{AIM}=\widehat{AMK}$

$\widehat{A}$ chung

$⇒\triangle AIM \backsim \triangle AMK(c.g.c)$

$⇒\dfrac{AI}{AM}=\widehat{AM}{AK}$

$ ⇒AK.AI=AM^2(3)$

Xét $(O)$ có: $\widehat{AMB}=\widehat{ACM}$ (góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung $MB$)

Xét $\triangle AMB$ và $\triangle ACM$ có:

$\widehat{AMB}=\widehat{ACM}$ 

$\widehat{A}$ chung

$⇒\triangle AMB \backsim \triangle ACM(g.g)$

$⇒\dfrac{AM}{AC}=\dfrac{AB}{AM}$

Hay $AB.AC=AM^2(4)$ 

Từ $(3)(4)⇒AK.AI=AB.AC(đpcm)$

undefined

Xuan Mai Do Thi
22 tháng 3 2021 lúc 15:38

GIÚP MÌNH VỚI

 

 

Mini Gaming
Xem chi tiết
Lam Vu
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2023 lúc 14:17

loading...

Lam Vu
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2023 lúc 13:48

a: góc AMO+góc ANO=180 độ

=>AMON nội tiếp

b: Xét ΔAKM và ΔAMI có

góc AMK=góc AIM

góc MAK chung

=>ΔAKM đồng dạng với ΔAMI

=>AK/AM=AM/AI

=>AM^2=AI*AK

Xét ΔABM và ΔAMC có

góc AMB=góc ACM

góc BAM chung

=>ΔABM đồng dạng với ΔAMC

=>AB/AM=AM/AC

=>AM^2=AB*AC=AK*AI