1 phòng họp có 100 người được sắp xếp ngồi đều trên các dãy ghế, nếu có thêm 44 người thì phải kê thêm 2 dãy ghế và mỗi dãy ghế phải xếp thêm 2 người nữa. Hỏi lúc đầu phòng họp có bao nhiêu dãy ghế ?
1 phòng họp có 100 ng` xếp ngồi đều trên các ghế . nếu có thêm 44 ng` thì phải kê thêm 2 dãy ghế và mỗi dãy ghế xếp thêm 2 người nữa . hỏi lúc đầu trong phòng họp có bao nhiêu dãy ghế
Gọi số dãy ghế là x (cái)
số người trong 1 dãy ghế là y (cái )
Ban đầu thìta có xy=100 (1)
Về sau thì (x+2)(y+2)=144 (2)
ta lấy (2)-(1) thì được xy+2x+2y+4-xy=144-100 suy ra 2x+2y=40 suy ra x+y=20
Kết hợp với (1), dùng định lý Viet về tổng và tích các nghiệm của phương trình bậc hai, suy ra x, y là nghiệm của phương trình X^2-20X+100=0, suy ra x=10, y=10
Kết luận: lúc đàu phòng có 10 dãy ghế (và mỗi dãy ghế có 10 người)
Trong một phòng họp có 70 người dự học được sắp xếp ngồi đều trên các dãy ghế. Nếu bớt đi 2 dãy ghế thì mỗi dãy ghế còn lại phải xếp thêm 4 người mới đủ chỗ ngồi. Hỏi lúc đầu phòng họp có mấy dãy ghế và mỗi dãy ghế được xếp bao nhiêu người?
Câu hỏi tương tự nha bạn
Gọi số dãy ghế ban đầu là a [a>0 ,a thuộc N]
=>Số người trên mỗi dãy ghế là : \(\frac{70}{a}\)
Khi bớt đi 2 dãy ghế => Số dãy ghế còn lại là : a-2
Số người trên mỗi dãy ghế lúc đó là : \(\frac{70}{a-2}\)
Theo bài ra ta có : \(\frac{70}{a}+4=\frac{70}{a-2}\)
=> 70[a-2]+4a[a-2]=70a =>35[a-2]+2a[a-2]=35a
=> 35a-70+2a\(^2\)-4a=35a
=> 2a\(^2\)-4a-70=0
=> \(a^2-2a-35=0=>a^2-2a+1-36=0=>\left[a-1^2\right]=36=6^2\). Có 2 trường hợp
Trường hợp 1 : a-1 = -6 => a = - 5 [loại]
Trường hợp 2 : a - 1 = 6 => a = 7
Còn đây bạn làm nốt tiếp
Vậy phòng họp lúc đầu có 7 dãy ghế và 10 người
Gọi x là số ghế lúc đầu \(\left(x\inℤ;x>2\right)\)
Ta có phương trình \(\frac{70}{x-2}-\frac{70}{x}=4\)
Giải phương trình được x = 7 ; x = -5
Chỉ có x = 7 thỏa mãn điều kiện đề bài
Vậy lúc đầu phòng họp có 7 dãy ghế và mỗi dãy có 10 người
trong mội phòng họp có 70 người dự họp được sắp xếp ngồi đều trên các dãy ghế nếu bới đi 2 dãy ghế thì mỗi dãy ghế phải xếp thêm 4 người mới đủ chỗ ngồi.Hỏi lúc đầu phòng họp có bao nhiêu dãy ghế
Gọi số dãy lúc đầu là x
Theo đề, ta có: 70/(x-2)-70/x=4
=>(70x-70x+140)/(x^2-2x)=4
=>4x^2-8x-140=0
=>x=7
Gọi số dãy ghế lúc đầu là x(x \(\in\) N* , x > 0)
Số ghế mỗi dãy: \(\dfrac{70}{x}\) (ghế)
Nếu bớt đi 2 dãy ghế ngồi thì mỗi dãy còn lại phải xếp thêm 4 người mới đủ chỗ ngồi.
\(\Rightarrow\left(x-2\right)\left(\dfrac{70}{x}+4\right)=70\)
\(\Rightarrow4x-\dfrac{140}{x}+62=70\)
\(\Rightarrow4x^2-140+62x=70x\) (do x \(\in\) N* )
\(\Rightarrow4x^2-8x-140=0\)
\(\Rightarrow x=-5\left(l\right);x=7\left(n\right)\)
Vậy lúc đầu phòng họp có 7 dãy ghế.
Trong 1 phòng họp có 80 người họp, được sắp xếp ngồi đều trên các dãy ghế. Nếu ta bớt đi 2 dãy ghế thì mỗi dãy ghế còn lại phải thêm 2 người mới đủ chỗ. Hỏi lúc đầu mỗi dãy được xếp bao nhiêu chỗ ngồi.
Gọi số chỗ ngồi ban đầu ở mỗi dãy là x
Theo đề, ta có: 80/x+2=80/x-2
=>80/(x+2)-80/x=-2
=>\(\dfrac{80x-80x-160}{x\left(x+2\right)}=-2\)
=>x^2+2x-80=0
=>x=8
Trong một phòng họp có 80 người ngồi họp được xếp đều ngồi trên các dãy ghế. Nếu ta bớt đi 2 dãy thì mỗi dãy còn lại phải xếp thêm 2 người mới đủ chỗ. Hỏi lúc đầu có bao nhiêu dãy ghế và mỗi dãy ghế có bao nhiêu người ngồi?
Vậy số dãy ghế ban đầu là 10 dãy và số người ngồi trên 1 dãy là 8 người.
một phòng học có 150 người, được sắp xếp ngồi đều trên các dãy ghế. nếu có thêm 71 người thì phải kê thêm hai dãy ghế thế vào mỗi dãy ghế phải bố trí thêm 3 người nữa. hỏi lúc đầu phòng học có bao nhiêu dãy ghế
Lời giải:
Giả sử ban đầu có $a$ dãy ghế thì mỗi dãy có $b$ người. Trong đó $a,b$ là số tự nhiên $\neq 0$. Ta có: $ab=150(1)$
Khi thêm 71 người thì có tổng $150+71=221$ người.
Số dãy ghế: $a+2$
Số người mỗi dãy: $b+3$
Ta có: $(a+2)(b+3)=221(2)$
Từ $(1); (2)\Rightarrow 3a+2b=65$
$\Rightarrow b=\frac{65-3a}{2}$. Thay vào $(1)$ thì:
$a.\frac{65-3a}{2}=150$
$\Leftrightarrow a(65-3a)=300$
$\Leftrightarrow 3a^2-65a+300=0$
$\Leftrightarrow a=15$ (chọn) hoặc $a=\frac{20}{3}$ (loại)
Vậy có $15$ dãy ghế.
Trong một phòng họp có 70 người dự họp được sắp xếp ngồi đều trên các dãy ghế.Nếu bớt đi hai dãy ghế thì mỗi dãy ghế còn lại phải xếp thêm 4 người mới đủ chỗ ngồi.Hỏi lúc đầu phòng họp có mấy dãy ghế và mỗi dẫy ghế được xếp bao nhiêu người?
Gọi số dãy là x, số người ngồi trong mỗi dãy là y dk:...
Theo bài ra ra có xy =70 (1)
Nếu ta bớt đi 2 dãy ghế thì mỗi dãy ghế còn lại phải xếp thêm 4 người ngồi mới đủ chỗ
=> (x-2)(y+4) = 70 (2)
Từ (1) và (2) ta có hệ phương trình...................
Giải ra được x = 7 ; y = 10
em học lớp 5 nên ko bt đâu ạ
Trong một phòng có 144 người họp được sắp xếp ngồi hết trên các dãy ghế ( số người trên mỗi dãy ghế đều bằng nhau). Nếu người ta thêm vào phòng họp 4 dãy ghế nữa, bớt mỗi dãy ghế ban đầu 3 người và xếp lại chỗ ngồi cho tất cả các dãy ghế sao cho số người trên mỗi dãy ghế đều bằng nhau thì vừa hết các dãy ghế. Hỏi ban đầu trong phòng họp có bao nhiêu dãy ghế?
bài mẫu nè:
gọi số dãy ghế là x, số ghê là y
theo đb ta có hpt
(x-2)(y+2)=288
xy=288
giải pt tìm đk x=18; y=16
trong 1 phòng có 80 ng họp ,đc sắp xép đều ngồi trên các dayx ghế . nếu ta bớt đi 2 dãy ghế thì mỗi dãy ghế còn lại phải xếp thêm 2 người ms đủ chỗ . hỏi lúc đầu có mấy dãy ghé và mỗi dãy ghế đc xếp bao nhiêu người ngồi
Gọi x là số dãy ghế; y là số người trên mỗi dãy ghế (x,y>0)
Ta có tổng cộng 80 người nên x*y =80 <=> x =80/y (1)
Nếu bớt đi 2 dãy ghế tức x-2 thì mỗi dãy còn lại phải xếp thêm 2 người tức y+2
Ta có: (x-2)*(y+2) = 80 (2)
Thay (1) vào (2) ta có: 2y^2 +4y -160 =0
<=> y=8 => x=10
Vậy có 10 dãy ghế và có 8 người trên mỗi dãy
Gọi x là số dãy ghế trong phòng họp ( x nguyên ; x>2)
Số người ngồi trên 1 dãy là \(\frac{80}{x}\)(người)
Nếu bới đi 2 dãy thì số dãy ghế còn lại là : x - 2 (dãy)
Số người ngồi trên mỗi dãy sẽ là: \(\frac{80}{x-2}\)(người )
Ta có phương trình :
\(\frac{80}{x-2}-\frac{80}{x}=2\Leftrightarrow\frac{40}{x-2}-\frac{40}{x}=1\Leftrightarrow x^2-2x-80=0\)
Giaỉ phương trình ta được \(x_1=10;x_2=-8\left(lọai\right)\)
Vậy số dãy ghế lúc đầu là 10 dãy và mỗi dãy xếp 8 người ngồi