tìm max A=\(^{a^3\cdot b-b^3\cdot a}\) biết a^2+b^2=1
tìm max A=$^{a^3\cdot b-b^3\cdot a}$a^3*b+b^3*a biết a^2+b^2=1
Tìm a, b, c biết: \(\frac{3\cdot a-2\cdot b}{5}=\frac{2\cdot c-5\cdot a}{3}=\frac{5\cdot b-3\cdot c}{2}\)và a+b+c= -50
Lời giải:
$\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}$
$=\frac{5(3a-2b)}{25}=\frac{3(2c-5a)}{9}=\frac{2(5b-3c)}{4}$
$=\frac{5(3a-2b)+3(2c-5a)+2(5b-3c)}{25+9+4}=\frac{0}{25+9+4}=0$
$\Rightarrow 3a-2b=2c-5a=5b-3c=0$
$\Rightarrow 3a=2b; 2c=5a$
$\Rightarrow \frac{a}{2}=\frac{b}{3}=\frac{c}{5}$
Áp dụng TCDTSBN:
$\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5$
$\Rightarrow a=(-5).2=-10; b=(-5).3=-15; c=(-5).5=-25$
Tìm 3 số a,b,c biết: \(\frac{3\cdot a-2\cdot b}{5}=\frac{2\cdot c-5\cdot a}{3}=\frac{5\cdot b-3\cdot c}{2}\) và a+b+c=-50
Bài 1: cho \(a,b,c\ge0\) và a+b+c=1. Chứng minh rằng :
a,\(\left(1-a\right)\cdot\left(1-b\right)\cdot\left(1-c\right)\ge8\cdot a\cdot b\cdot c\)
b,\(16\cdot a\cdot b\cdot c\ge a+b\)
c,\(\frac{a}{1+a}+\frac{2\cdot b}{2+b}+\frac{3\cdot c}{3+c}\le\frac{6}{7}\)
Bài 2: cho a,b,c>0 và a.b.c=0 chứng minh rằng:
\(\frac{b\cdot c}{a^2\cdot b+a^2\cdot c}+\frac{a\cdot c}{b^2\cdot c+b^2\cdot a}+\frac{a\cdot b}{c^2\cdot a+c^2\cdot b}\ge\frac{3}{2}\)
Bài 1 :
a) Ta có : \(\left(1-a\right)\left(1-b\right)\left(1-c\right)=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Áp dụng bđt Cauchy : \(a+b\ge2\sqrt{ab}\) , \(b+c\ge2\sqrt{bc}\) , \(c+a\ge2\sqrt{ca}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\) hay \(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge8abc\)
tìm a,b,c biết \(\frac{1}{2}\cdot a=\frac{2}{3}\cdot b=\frac{3}{4}c\)và a-b=15
a) Chứng minh biểu thức sau không phụ thuộc vào x:
\(\left(\frac{5\cdot a+b}{5\cdot a^2-a\cdot b}+\frac{5\cdot a-b}{5\cdot a^2-a\cdot b}\right)\div\frac{100\cdot a^2+4\cdot b^2}{25\cdot a^3-a\cdot b^2}\)
b) Tìm x; y sao cho \(x^3+y^3=3\cdot x\cdot y-1\)
cho a,b khác 0 thỏa mãn a+b
a, \(\frac{a}{b^3-1}+\frac{b}{a^3-1}=\frac{2\cdot\left(a\cdot b-2\right)}{a^2\cdot b^2+3}\)
b, \(\frac{a}{b^3-1}+\frac{b}{a^3-1}=\frac{2\cdot\left(b-a\right)}{a^2\cdot b^2+3}\)
Cho a,b khác 0 thỏa mãn a+b=1
a, \(\frac{a}{b^3-1}\)+\(\frac{b}{a^3-1}\)=\(\frac{2\cdot\left(a\cdot b-2\right)}{a^2\cdot b^2+3}\)
b,\(\frac{a}{b^3-1}+\frac{b}{a^3-1}=\frac{2\cdot\left(b-a\right)}{a^2\cdot b^2+3}\)
câu 1) \(A=\frac{x+2\cdot y-3\cdot z}{x-2\cdot y+3\cdot z}\) Tính A biết x : y : z = 5 : 4 : 3
Câu 2) cho a,b,c khác 0 và \(\frac{a\cdot b}{a+b}\)= \(\frac{b\cdot c}{b+c}\)= \(\frac{c\cdot a}{c+a}\)
Tính A = \(\frac{a\cdot b^2+b\cdot c^2+c\cdot a^2}{a^3+b^3+c^3}\)
câu 3 ) Tìm x để biểu thức A = \(\frac{2016\cdot\left|x-2\right|+2018}{\left|x-2\right|+1}\) đạt giá trị lớn nhất
câu 4) Cho A = \(2\cdot2^2+3\cdot2^3+4\cdot2^4+5\cdot2^5+.......+20.2^{20}\) so sánh A với \(^{2^{25}}\)
Các bạn giúp mình với mai mình đi thi rồi, các bạn nhớ viết rõ cách làm ra nhé cảm ơn đã giúp mình. Thank
\(^{2^{25}}\) là \(2^{25}\) mé các bạn, mình sợ mọi người nhầm
Câu 1 : Bài giải
Theo đề bài : \(x\text{ : }y\text{ : }z=5\text{ : }4\text{ : }3\text{ }\Rightarrow\text{ }\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{x+y-z}{5+4-3}=\frac{x+y-z}{6}=\frac{x-y+z}{5-4+3}=\frac{x-y+z}{4}\)
( Áp dụng t/c dãy tỉ số bằng nhau )
\(\Rightarrow\text{ }x+y-z=x-y+z\)
\(\Rightarrow\text{ }y=x-y+z+z-x=2z+y\)
\(A=\frac{x+2\cdot y-3\cdot z}{x-2\cdot y+3\cdot z}=\frac{\left(x+y-z\right)+\left(y-2z\right)}{\left(x-y+z\right)+\left(2z-y\right)}=\frac{\left(x+y-z\right)+\left(2z+y-2z\right)}{\left(x-y+z\right)+\left(2z-2z-y\right)}=\frac{\left(x+y-z\right)+y}{\left(x-y+z\right)+\left(-y\right)}\)
Đến đây chịu ! Nhưng giải gần xong rồi !