Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Tuyền
Xem chi tiết
Hoàng Tử Lớp Học
14 tháng 3 2016 lúc 19:01

Ta có xy+2x-y=5<=>x(y+2)-(y+2)=3 <=>(x-1)(y+2)=3 .DO x\(\in\)Nsao =>x-1 thuộc n sao =>x-1 thuộc ước của 3

bạn tự làm tiếp nha  nhớ k mk đó

Hoàng Phúc
14 tháng 3 2016 lúc 20:08

xy+2x-y=5

<=>x(y+2)-y-2=5-2

<=>x(y+2)-(y+2)=3

<=>(y+2)(x-1)=3

<=>y+2 và x-1 E Ư(3)

<=>......

Đinh Minh Tuệ
Xem chi tiết
Trần Ngô Hạ Uyên
Xem chi tiết
Thu Trang Lê
7 tháng 3 2018 lúc 21:08

x=0 , y=1

Trần Ngô Hạ Uyên
7 tháng 3 2018 lúc 21:13

cho mình xin cách giải

Đại Số Và Giải Tích
Xem chi tiết
anh tèo
Xem chi tiết
Trần Bảo Trâm
Xem chi tiết
Nguyễn Huy Hoàng
Xem chi tiết
Lê Thị Thục Hiền
19 tháng 5 2021 lúc 11:26

\(gt\Leftrightarrow\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}=1\)

\(P=\dfrac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2x^2+xz+2z^2}+z\sqrt{2y^2+xy+2x^2}\right)\)

\(=\dfrac{1}{xyz}\left(x\sqrt{\dfrac{5}{4}\left(y+z\right)^2+\dfrac{3}{4}\left(y-z\right)^2}+y\sqrt{\dfrac{5}{4}\left(x+z\right)^2+\dfrac{3}{4}\left(x-z\right)^2}+z\sqrt{\dfrac{5}{4}\left(x+y\right)^2+\dfrac{3}{4}\left(x-y\right)^2}\right)\)

\(\ge\dfrac{1}{xyz}\left[x.\dfrac{\sqrt{5}\left(z+y\right)}{2}+y.\dfrac{\sqrt{5}\left(x+z\right)}{2}+z.\dfrac{\sqrt{5}\left(x+y\right)}{2}\right]\)

\(=\dfrac{\sqrt{5}\left(z+y\right)}{2yz}+\dfrac{\sqrt{5}\left(x+z\right)}{2xz}+\dfrac{\sqrt{5}\left(x+y\right)}{2xy}\)

\(=\dfrac{\sqrt{5}}{3}\left(1+1+1\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge\dfrac{\sqrt{5}}{3}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)^2=\dfrac{\sqrt{5}}{3}\) (bunhia)

Dấu = xảy ra khi \(x=y=z=9\)

Khôi Bùi
19 tháng 5 2021 lúc 11:30

 Thấy : \(\sqrt{2y^2+yz+2z^2}=\sqrt{\dfrac{5}{4}\left(y+z\right)^2+\dfrac{3}{4}\left(y-z\right)^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)>0\) 

CMTT : \(\sqrt{2x^2+xz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)  ; \(\sqrt{2y^2+xy+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\) 

Suy ra : \(P\ge\dfrac{1}{xyz}.\dfrac{\sqrt{5}}{2}\left[x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\right]\)

\(\Rightarrow P\ge\sqrt{5}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\) 

Ta có : \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=\sqrt{xyz}\Leftrightarrow\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}=1\) 

Mặt khác :   \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)^2}{3}=\dfrac{1}{3}\)

Suy ra : \(P\ge\dfrac{\sqrt{5}}{3}\)

" = " \(\Leftrightarrow x=y=z=9\)

Trần Bội Trân
Xem chi tiết
Hoàng Phúc
2 tháng 3 2016 lúc 20:35

x+y+xy=3

<=>(x+xy)+y=3

<=>x(y+1)+y+1=3+1=4

<=>x(y+1)+(y+1)=4

<=>(x+1)(y+1)=4

lập bảng,tìm  Ư(4);

đáp án:6 cặp (x;y)

Nguyễn Quốc Khánh
2 tháng 3 2016 lúc 20:37

x+y+xy=3

<=>x(y+1)+(y+1)=4

<=>(x+1)(y+1)=4

Vì x,y thuộc Z nên ta có:

x+114-1-42-2
y+141-4-12-2
x03-2-51-3
y30-5-21-3
Long Vũ
Xem chi tiết
Thắng Nguyễn
6 tháng 1 2016 lúc 20:06

Ta có:
x+y+xy=3
<=> (x+xy) + (y+1) = 4
<=> x(y+1) + (y+1) = 4
<=> (x+1)(y+1) = 4

Vì x,y nguyên nên (x+1) và (y+1) nguyên

Lại có 4=(-1).(-4)=(-2).(-2)=1.4=2.2

Khi đó ta có:
{x+1= -1 <=> {x= -2
{y+1= -4........{y= -5
hoặc
{x+1= -4 <=> {x= -5
{y+1= -1........{y= -2
hoặc
{x+1= -2 <=> {x= -3
{y+1= -2........{y= -3
hoặc
{x+1= 4 <=> {x= 3
{y+1= 1........{y= 0
hoặc
{x+1= 1 <=> {x= 0
{y+1= 4........{y= 3
hoặc
{x+1= 2 <=> {x= 1
{y+1= 2........{y= 1

Vậy (x;y) bằng (-2;-5) ; (-5;-2) ; (-3;-3) ; (3;0) ; (0;3) ; (1;1)

Trần Trương Quỳnh Hoa
6 tháng 1 2016 lúc 19:56

 Ta có 

x+y+xy=3 
<=> (x+xy) + (y+1) = 4 
<=> x(y+1) + (y+1) = 4 
<=> (x+1)(y+1) = 4 

Vì x,y nguyên nên (x+1) và (y+1) nguyên 

Lại có 4=(-1).(-4)=(-2).(-2)=1.4=2.2 

Khi đó ta có: 
{x+1= -1 <=> {x= -2 
{y+1= -4........{y= -5 
hoặc 
{x+1= -4 <=> {x= -5 
{y+1= -1........{y= -2 
hoặc 
{x+1= -2 <=> {x= -3 
{y+1= -2........{y= -3 
hoặc 
{x+1= 4 <=> {x= 3 
{y+1= 1........{y= 0 
hoặc 
{x+1= 1 <=> {x= 0 
{y+1= 4........{y= 3 
hoặc 
{x+1= 2 <=> {x= 1 
{y+1= 2........{y= 1 

Vậy (x;y) bằng (-2;-5) ; (-5;-2) ; (-3;-3) ; (3;0) ; (0;3) ; (1;1)

Thắng Nguyễn
6 tháng 1 2016 lúc 20:09

Ta có:
x+y+xy=3
<=> (x+xy) + (y+1) = 4
<=> x(y+1) + (y+1) = 4
<=> (x+1)(y+1) = 4

Vì x,y nguyên nên (x+1) và (y+1) nguyên

Lại có 4=(-1).(-4)=(-2).(-2)=1.4=2.2

Khi đó ta có:
{x+1= -1 <=> {x= -2
{y+1= -4........{y= -5
hoặc
{x+1= -4 <=> {x= -5
{y+1= -1........{y= -2
hoặc
{x+1= -2 <=> {x= -3
{y+1= -2........{y= -3
hoặc
{x+1= 4 <=> {x= 3
{y+1= 1........{y= 0
hoặc
{x+1= 1 <=> {x= 0
{y+1= 4........{y= 3
hoặc
{x+1= 2 <=> {x= 1
{y+1= 2........{y= 1

Vậy (x;y) bằng (-2;-5) ; (-5;-2) ; (-3;-3) ; (3;0) ; (0;3) ; (1;1)