chứng ninh rằng : 1002003 + 5 / 3 thuộc N
Cho a+5b chia hết cho 7 (a ,b THUỘC N). chứng ninh rằng 10a+b chia hết cho 7
http://olm.vn/hoi-dap/question/22266.html
Bạn vào đây tham khảo nhé !!!
tích mình nha !!!
1)chứng ninh rằng
a)\(n\cdot\left(n^2+1\right)\cdot\left(n^2+4\right)\)chia hết cho 5
b)\(9\cdot10^n+18\)chia hết cho 27 với mọi n thuộc N
2)Nếu n không chia hết cho 4 thì \(1^n+2^n+3^n+4^n\) chia hết cho 5
3)Tìm số tự nhiên n để \(3^n+63\)chia hết cho 72
chứng minh rằng với mọi n thuộc N^ ta có n^5/5 +n^4/2+n^3/3-n/20 thuộc Z
bạn hãy giúp mình với! thanks!
Chứng minh rằng : 10n - 4 (n thuộc N*) là bội của 3 .
Chứng minh rằng : 92n+1 - 14 (n thuộc N*) là bội của 5 ,
10^n-4=10...0-4 (n số 0)
=999...96 (n-1 số 9)
Vì 999...96 có tổng các chữ số là 9n+6=3(3n+2) chia hết cho 3 nên 10^n-4 chia hết cho 3.
b/9^2n+1-14=9^2n.9-14=81^n.9-14=A1.9-14=A9-14=B5 chia hết cho 5. Vậy 9^2n+1 -14 chia hết cho 5
Chứng minh rằng : 10n - 4 ( n thuộc N*) là bội của 3.
Chứng minh rằng : 92n+1 - 14 ( n thuộc N*) là bội của 5.
câu 2 nè:
=92n*9-14
=...1*9-4-10
=...9 -4 -10
=...5-10
=...5 chia hết cho 5
10n- 4 = 99...6 (có n-1 chữ số 9)
theo dấu hiệu chia hết cho 3 thì 9(n-1) + 6 chia hết cho 3. Vì 9(n-1) chia hết cho 3, 6 chia hết cho 3
nên 10n- 4 chia hết cho 3 hay nó là bội của 3
câu 2
ta phân tích 9^2n+1 ra còn 9^2n*9 .Vì 2 nhân với bất cứ số tự nhiên nào cũng có chữ số tận cùng là 8 chữ số sau:0;2;4;6;8
Ta có bất cứ số tự nhiên có cơ số là 9 và số mũ chẵn thì có kết quả là.....1(có n chữ số). Mà 9^2n*9 sẽ có chữ số tận cùng 9 vì bất cứ số nào nhân với chữ số tận cũng bằng số cuối của số tự nhiên được nhân.
Ta có 9^2n+1-14=.....9-14.Ta phân tích 14=10+4 mà....9-4-10=(...9-4)-10 vì 9-4 =5 mà....5-10 cũng có chữ số cuối tận cùng là 5
Mà các số có chữ số tận củng cùng là 0 hoặc 5 luôn chia hết cho 5
suy ra 9^2n+1-14 là bội của 5
Vậy 9^2+1-14 là bội của 5
chứng minh rằng với mọi n ta có n^5/5 +n^3/3+7n/15 thuộc Z
ko hỉu viết lại đề bài đi như thế này à ?
chứng minh rằng với mọi n ta có n5/5 + n5: 3+7n/15 thuộc Z
2) P = n^5/5 + n^3/3 + 7n/15 =
= (n^5 - n + n)/5 + (n^3 -n +n)/3 + 7n/15
= (n^5 -n)/5 + (n^3 -n)/3 + n/5 + n/3 + 7n/15
* từ câu d ta có n^5 - n chia hết cho 30 => n^5 -n chia hết cho 5
=> (n^5 - n)/5 = a (thuộc Z)
* n^3 - n = n(n²-1)(n²+1) = (n-1)n(n+1)(n²+1) có tích của 3 số nguyên liên tiếp nên chia hết cho 3
=> (n^3 - n)/3 = b (thuộc Z)
* n/5 + n/3 + 7n/15 = 15n/15 = n (thuộc Z)
Vậy: P = a + b + n thuộc Z
chứng minh rằng với mọi n ta có n^5/5 +n^3/3+7n/15 thuộc Z
chứng minh rằng với mọi n ta có n^5/5 +n^3/3+7n/15 thuộc Z
Chứng tỏ rằng 5^60n < 2^140n < 3^100n (n thuộc N*)
\(5^{60n}< 2^{140n}< 3^{100n}\)
\(5^{60n}=\left(5^3\right)^{20n}=125^{20n}\\ 2^{140n}=\left(2^7\right)^{20n}=128^{20n}\\ 3^{100n}=\left(3^5\right)^{20n}=243^{20n}\)
Mà\(125< 128< 243\Rightarrow125^{20n}< 128^{20n}< 243^{20n}\Rightarrow5^{60n}< 2^{140n}< 3^{100n}\)
Vậy đã CMR: \(5^{60n}< 2^{140n}< 3^{100n}\)
1) Chứng tỏ rằng :(17^n+1)(17^n+2)chia hết cho 3 với mỗi n thuộc N
2)Chứng tỏ rằng : (9^m+9)(9^m+2)chia hết cho 5 với mỗi m thuộc N