Số nghiệm nguyên trong khoảng (-5;5) của bất phương trình \(\left|x+3\right|-\left|3-2x\right|\ge3x\)
1.Cho phương trình x2 +4x-m=0(1).Tìm tất cả các giá trị của tham số m để phương trinh (1) có đúng 1 nghiệm thuộc khoảng (-3,1)
2.Có bao nhiêu giá trị m nguyên trong nửa khoảng (0;2019] để phương trình |x2 -4|x|-5|-m có hai nghiệm phân biệt
Xét phương trình hoành độ giao điểm\(x^2\)+4x-m=0 <=> x^2+4x=m, đây là kết hợp của 2 hàm số (P):y=\(x^2\)+4x và (d):y=m.
Khi vẽ đồ thị ta thấy parabol đồng biến trên khoảng (-2;+∞)=> Điểm giao giữa parabol và đồ thị y=m là điểm duy nhất thỏa mãn phương trình có duy nhất 1 nghiệm thuộc khoảng (-3;1).Vậy để phương trình có 1 nghiệm duy nhất <=> delta=0 <=>16+4m=0<=>m=-4.
mình trình bày hơi dài mong bạn thông cảm
Có bao nhiêu số nguyên m sao cho phương trình msinx + 4cosx = 4 có nghiệm trong khoảng (0;π/3)?
A. 2.
B. 3.
C. 4.
D. 5.
Số giá trị nguyên của tham số m nằm trong khoảng (0.2020) để phương trình x - 1 - 2019 - x = 2020 - m có nghiệm là
A. 2020
B. 2021
C. 2019
D. 2018
Do đó
Vẽ dáng đồ thị hàm số ta được:
Từ hình vẽ ta thấy phương trình đã cho có nghiệm nếu đường thẳng y = 2020 - m cắt đồ thị hàm số trên tại ít nhất một điểm hay
giá trị của m thỏa mãn bài toán.
Chọn D.
Phương trình l o g 2 ( 5 - 2 x ) = 2 - x có hai nghiệm x 1 , x 2 x 1 < x 2 . Tổng các giá trị nguyên trong khoảng x 1 ; x 2 bằng
A. 0
B. 3
C. 2
D. 1
Hỏi có bao nhiêu giá trị mm nguyên trong nửa khoảng (0; 2017] để phương trình | x 2 − 4|x |−5| − m = 0 có hai nghiệm phân biệt?
A. 2016
B. 2008
C. 2009
D. 2017
Thực nghiệm chỉ ra rằng các nguyên tử bền có tỉ lệ số nơtron/số proton nằm trong khoảng 1 ≤ N P ≤ 1 , 5 (trừ trường hợp nguyên tử H). Một nguyên tử X bền có tổng số hạt (proton, nơtron, electron) là 13. X là nguyên tử của nguyên tố nào sau đây?
A. liti
B. beri
C. cacbon
D. nitơ
Tìm tổng các giá trị nguyên của tham số m để phương trình 4 sin x + 2 1 + sin x = m có tổng các nghiệm trong khoảng 0 ; π bằng π
A. 22
B. 25
C. 30
D. 33
Tìm tổng các giá trị nguyên của tham số m để phương trình 4 sin x + 2 1 + sin x = m có tổng các nghiệm trong khoảng 0 ; π bằng π .
A. 22
B. 25
C. 30
D. 33
Đáp án A
Điều kiện x ∈ ℝ
Đặt t = 2 sin x . Phương trình đã cho trở thành t 2 + 2 t = m ( * )
Vì sin x = sin α ⇔ x = α + 2 k π x = π − α + k 2 π nên để phương trình đã cho có tổng các nghiệm trong khoảng 0 ; π bằng π thì phương trình (*) phải có đúng một nghiệm t ∈ 1 ; 2 sin x ∈ 0 ; 1 thì 2 sin x ∈ 1 ; 2
Xét hàm số f t = t 2 + 2 t có bảng biến thiên
Suy ra để phương trình (*) có đúng một nghiệm t ∈ 1 ; 2 thì m ∈ 3 ; 8 .Vậy tổng các giá trị nguyên của m thỏa mãn yêu cầu bài toán là 4 + 5 + 6 + 7 = 22
Cho bất phương trình 2 log 3 2 ( 3 x ) - 2 m log 3 x + 3 log 2 x ( log 3 x + 2 - 2 m ) log 3 x ≤ 2 Biết rằng bất phương trình có đúng 74 nghiệm nguyên x ∈ 8 ; 2018 Giá trị nguyên của tham số m thỏa mãn bài toán nằm trong khoảng
A. (0;4)
B. (4;7)
C. (7;15)
D. (15;70)