Cho x+y+z=0 và x^2+y^2+z^2=1 tính M = 2( x^4 + y^4 +z^4)
cho x+y+z=0 và x^2+y^2+z^2=a^2. tính gtbt x^4+y^4+z^4
Cho x+y+z=0 và x^2+y^2+z^2=9. Tính P=x^4+y^4+z^4
\(x+y+z=0\Rightarrow x^2+y^2+z^2+2xy+2yz+2xz=0\)\(=0\)
\(\Rightarrow2xy+2yz+2xz=-9\)
\(\Rightarrow xy+yz+xz=-\frac{9}{2}\)
\(\Rightarrow x^2y^2+y^2z^2+x^2z^2+2xy^2z+2xyz^2+2x^2yz=\left(-\frac{9}{2}\right)^2=\frac{81}{4}\)\(\)
\(\Rightarrow x^2y^2+y^2z^2+x^2z^2+2xyz\left(x+y+z\right)=\frac{81}{4}\)
\(\Rightarrow x^2y^2+y^2z^2+x^2z^2=\frac{81}{4}\)
\(\left(x^2+y^2+z^2\right)^2=9^2=81\)
\(\Rightarrow P=x^4+y^4+z^4=81-2\left(x^2y^2+y^2z^2+x^2z^2\right)=81-2.\frac{81}{4}=\frac{81}{2}\)
1/ Cho x, y, z khác 0 và xy + yz + zx = 0.
Tính S= (y+z)/x + (z+x)/y + (x+y)/z
2/ Cho x= y+1. C/m (x + y)(x2 + y2)(x4 + y4)= (x8 - y8)
2) \(x=y+1\Rightarrow x-y=1\)
\(\Rightarrow\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)=x^8-y^8\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)=x^8-y^8\)
\(\Leftrightarrow\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x^4+y^4\right)=x^8-y^8\)
\(\Leftrightarrow\left(x^4-y^4\right)\left(x^4+y^4\right)=x^8-y^8\)
\(\Leftrightarrow x^8-y^8=x^8-y^8\)(đúng)
Vậy \(\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)=x^8-y^8\)(đpcm)
a)Tìm x,y,z biết :
\(\left\{{}\begin{matrix}x+y+z=0\\x^2+y^2+z^2=6\\x^3+y^3+z^3=6\end{matrix}\right.\)
b)Tìm các số nguyên x,y t/m:
2x2+\(\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\) sao cho tích x.y có GTLN
c)Cho a+b+c=0 và a2+b2+c2=14. Tính GT của bt M=a4+b4+c4
Cho x,y,z thỏa mãn :{x+y+z=0,x^2+y^2+z^2=14. tính B= x^4+y^4+z^4
https://olm.vn/hoi-dap/detail/68409793765.html
Bạn tham khảo ở đây.
1,Cho \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Chứng minh rằng : (x2y2 + y2z2 + z2x2)2 = 2(x4y4 + y4z4 +z4x4)
2, cho x+y+z =0
và xy + yz + zx =0
Tính S = (x - 1)1999 + y2003 + (z + 1)2006
Ta có: \(x+y+z=0\)
\(\Leftrightarrow\) \(\left(x+y+z\right)^2=0\)
\(\Leftrightarrow\)\(x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
\(\Leftrightarrow\)\(x^2+y^2+z^2=0\) (vì xy + yz + xz =0)
\(\Leftrightarrow\)\(x=y=z=0\)
Vậy \(S=\left(0-1\right)^{1999}+0^{2003}+\left(0+1\right)^{2006}=0\)
Cho x+y-z=0 và xy+yz-xz=0.tính s=(x-z-2)^3+1/7(x+y-7)^3-4/9(y+z-3/2)^4
cho x,y,z # 0 ;x+y+z=1. tính 2.(x^4+y^4+z^4)
1/ Cho x, y, z khác 0 và xy + yz + zx = 0.
Tính S= (y+z)/x + (z+x)/y + (x+y)/z
2/ Cho x= y+1. C/m (x + y)(x2 + y2)(x4 + y4)= (x8 - y8)
3/ a) C/m n4+2n3-n2-2n chia hết cho 24 với mọi n thuộc Z
b) Cho a+b= 5 và ab= 6. Tính (a - b)2013
4/ C/m phân số sau tối giản với mọi n: (3n+1)/(5n+2)
Gọi Ư CLN của tử và mẫu là d => 3n+1 chia hết cho d, 5n+2 chia hết cho d . Sau đó nhân 3n+1 với 5 và 5n+2 với 3, rồi lấy mẫu trừ tử
=> 15n+6-(15n+5) chia hết cho d => 1 chia hết cho d => d=1=> (3n+1;5n+2)=1(ĐFCM)
Bài 2:
x=y+1 =>x-y=1
Ta có :
(x-y)(x+y)(x2+y2)(x4+y4)= (x2-y2)(x2+y2)(x4+y4)
=(x4-y4)(x4+y4)=x8-y8 (ĐFCM)