chiu chet
Ta có: (x + y + z)^2 = 0 <=> x^2 + y^2 + z^2 + 2.(xy + yz + xz) = 0
< => 1 + 2(xy + yz + xz) = 0
< => xy + yz + xz = -1/2
Lại có: x^2.y^2 + y^2.z^2 + x^2.z^2 = (xy + yz + xz)^2 - 2.xyz.(x + y + z) = 1/4 - 0 = 1/4
=> x^4+y^4+z^4 = (x^2 + y^2 + z^2)^2 - 2.(x^2.y^2 + y^2.z^2 + x^2.z^2) = 1 - 2.1/4 = 1/2
Vậy x^4 + y^4 + z^4 = 1/2
nhu the co dung k