Gọi M(x;y) là các điểm biểu diễn cho số phức z thỏa mãn log 1 3 z − 2 + 2 4 z − 2 − 1 > 1. Khi đó x ; y thỏa mãn hệ thức nào dưới đây?
A. x + 2 2 + y 2 > 49
B. x + 2 2 + y 2 < 49
C. x − 2 2 + y 2 < 49
D. x − 2 2 + y 2 > 49
Cho 3 số dương x,y,z thỏa mãn \(x^2+y^2+z^2\le3\)
Tìm GTNN của P=\(\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+zx}\)
Trong mặt phẳng tọa độ, tập hợp các điểm M x ; y biểu diễn của số phức z = x + y i x ; y ∈ ℝ thỏa mãn z + 1 + 3 i = z - 2 - i là
A. Đường tròn tâm O bán kính R = 1
B. Đường tròn đường kính AB với A - 1 ; - 3 và B 2 ; 1
C. Đường trung trực của đoạn thẳng AB với A - 1 ; - 3 và B 2 ; 1
D. Đường thẳng vuông góc với đoạn AB tại A với A A - 1 ; - 3 , B 2 ; 1
Giả sử a,b là các số thực sao cho x 3 + y 3 = a 10 3 x + b 10 2 x đúng với mọi các số thực dương x, y, z thỏa mãn log ( x + y ) = z và log ( x 2 + y 2 ) = z + 1 . Giá trị của a+b bằng
A. -31/2
B. -25/2
C. 31/2
D. 29/2
Cho các số thực x, y, z thỏa mãn điều kiện log 16 x + y + z 2 x 2 + 2 y 2 + 2 z 2 + 1 = x x - 2 + y y - 2 + z z - 2
. Tổng giá trị lớn nhất và nhỏ nhất của biểu thức F = x + y - z x + y + z bằng?
A. - 1 3
B. 2 3
C. - 2 3
D. 1 3
Cho các số thực x,y,z không âm thỏa mãn x + y + z = 2. GTLN và GTNN của biểu thức P = 2 1 + x + 1 + y 2 + 1 + z 2 lần lượt là M và m. Giá trị M + m nằm trong khoảng nào dưới đây?
A. (5;6)
B. (6;7)
C. (7;8)
D. (8;9)
các số nguyên dương x;y;z thỏa mãn \(x+\frac{1}{y+\frac{1}{z}}=\frac{10}{7}\)
Giả sử a,b là các số thực sao cho x 3 + y 3 = a . 10 3 x + b . 10 2 x đúng với mọi số thực dương x,y,z thỏa mãn log(x+y)=z và log x 2 + y 2 = z + 1 Giá trị của a+b bằng:
A. -31/2
B. -25/2
C. 31/2
D. 29/2
Cho số phức z = x + y i với x, y là các số thực không âm thỏa mãn z - 3 z - 1 + 2 i và biểu thức P = z 2 - z - 2 + i z 2 - z - 2
z 1 - i + z - 1 + i . Giá trị lớn nhất và giá trị
nhỏ nhất của P lần lượt là:
A. 0 và - 1
B. 3 và - 1
C. 3 và 0
D. 2 và 0