Tìm x lớn nhất
34<x*5+15<45
cho A=\(\dfrac{1}{\sqrt{x}+10}\);B=\(\dfrac{4}{2-\sqrt{x}}\)
a, tìm x để A lớn nhất
b, tìm x để B lớn nhất
a, Ta thấy: \(\sqrt{x}\ge0\forall x\) (ĐK: \(x\ge0\))
\(\Rightarrow\sqrt{x}+10\ge10\forall x\)
\(\Rightarrow\dfrac{1}{\sqrt{x}+10}\le\dfrac{1}{10}\forall x\)
\(\Rightarrow Max_A=\dfrac{1}{10}\Leftrightarrow\dfrac{1}{\sqrt{x}+10}=\dfrac{1}{10}\)
\(\Leftrightarrow\sqrt{x}+10=10\)
\(\Leftrightarrow\sqrt{x}=0\)
\(\Leftrightarrow x=0\left(tm\right)\)
b, Ta có: \(\sqrt{x}\ge0\forall x\) (ĐK: \(x\ge0;x\ne4\))
\(\Rightarrow-\sqrt{x}\le0\forall x\)
\(\Rightarrow2-\sqrt{x}\le2\forall x\)
\(\Rightarrow\dfrac{4}{2-\sqrt{x}}\ge\dfrac{4}{2}=2\)
\(\Rightarrow Min_B=2\Leftrightarrow\dfrac{4}{2-\sqrt{x}}=2\)
\(\Leftrightarrow2-\sqrt{x}=2\)
\(\Leftrightarrow\sqrt{x}=0\)
\(\Leftrightarrow x=0\left(tm\right)\)
Vậy ...
#Urushi
a: ĐKXĐ: x>=0
\(\sqrt{x}+10>=10\) với mọi x thỏa mãn ĐKXĐ
=>\(A=\dfrac{1}{\sqrt{x}+10}< =\dfrac{1}{10}\) với mọi x thỏa mãn ĐKXĐ
Dấu = xảy ra khi x=0
=>Amax=1/10 khi x=0
b:Sửa đề: B nhỏ nhất
ĐKXĐ: x>=0; x<>4
\(2-\sqrt{x}< =2\)
=>\(B=\dfrac{4}{2-\sqrt{x}}>=\dfrac{4}{2}=2\)
Dấu = xảy ra khi x=0
cho phân số C=3.|x|+24|x|−53.|x|+24|x|−5 (x∈Z)
a) tìm x∈Z để C đạt giá trị lớn nhất, tìm giá trị lớn nhất đó
b) tìm x∈Z để C là số tự nhiên
C=(3|x|+2)/(4|x|-5)
tìm x để C đạt giá trị lớn nhất,tìm giá trị lớn nhất ấy
tìm x để C là số nguyên
ta có (3lxl+2)/(4lxl-5) đạt giá trị lớn nhất khi mẫu bằng 1
=>4x-5=1
x=1+5=6
x=6/4=3/2
vậy x =3/2
thay x vào bt ta đc 3x+2=3*3/2+2=6,5
cho phân số C=3.|x|+24|x|−53.|x|+24|x|−5 (x∈Z)
a) tìm x∈Z để C đạt giá trị lớn nhất, tìm giá trị lớn nhất đó
b) tìm x∈Z để C là số tự nhiên
help meeeeee
Căn x - 1 trên căn x. Tìm A để A đạt giá trị lớn nhất, tìm giá trị lớn nhất đó
cho phân số C=\(\dfrac{3.|x|+2}{4|x|-5}\) (x∈Z)
a) tìm x∈Z để C đạt giá trị lớn nhất, tìm giá trị lớn nhất đó
b) tìm x∈Z để C là số tự nhiên
C=(3|x|+2)/(4|x|-5)
tìm x để C đạt giá trị lớn nhất,tìm giá trị lớn nhất ấy
tìm x để C là số tự nhiên
ta có (3lxl+2)/(4lxl-5) đạt giá trị lớn nhất khi mẫu bằng 1
=>4x-5=1
x=1+5=6
x=6/4=3/2
vậy x =3/2
thay x vào bt ta đc 3x+2=3*3/2+2=6,5
Cho biểu thức A=3/x-1
a. Tìm số nguyên x để A đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất.
b. Tìm số nguyên x để A đạt giá trị lớn nhất. Tìm giá trị lớn nhất.
a) \(A=\dfrac{3}{x-1}\)
Điều kiện \(|x-1|\ge0\)
\(\Rightarrow A=\dfrac{3}{x-1}\ge0\)
\(GTNN\left(A\right)=0\) \(\Rightarrow x-1=+\infty\Rightarrow x\rightarrow+\infty\)
b) \(GTLN\left(A\right)\) không có \(\left(A=\dfrac{3}{x-1}\ge0\right)\)
Cho biểu thức y = x / ( x + 2004 ) ^ 2 , ( x lớn hơn 0 )
Tìm x để biểu thức đặt giá trị lớn nhất . Tìm giá trị đó
Ta đặt t = \(\frac{1}{2004y}\)
Bài toán được đưa về tìm x để t bé nhất :
Ta có \(t=\frac{\left(x+2004\right)^2}{2004x}=\frac{x^2+2.2004x+2004^2}{2004x}=\frac{x}{2004}+2+\frac{2004}{x}=\frac{x^2+2004^2}{2004x}+2\) ( 1 )
Ta thấy : Theo bất đẳng thức Côsi cho 2 số dương ta có :
\(x^2+2004^2\ge2.2004.x\Rightarrow\frac{x^2+2004^2}{2004x}\ge2\) ( 2 )
Dấu " = " xảy ra khi x = 2004
Từ ( 1 ) và ( 2 ) \(\Rightarrow t\ge4\Rightarrow\) giá trị bé nhất của t = 4 khi x = 2004
Vậy \(y_{max}=\frac{1}{2004t}=\frac{1}{8016}\) . Khi \(x=2004\)
Chúc bạn học tốt !!!
tìm x biết
a ) x thuộc ƯC ( 54 , 12) và x lớn nhất
b ) 24 : x ; 36 : x ; 160 : x và x lớn nhất
c) tìm số tự nhiên a lớn nhất biết rằng 420 : a ; 700 : a
a, x thuộc ƯC (54, 12) và x lớn nhất => x = ƯCLN (54, 12)
54 = 2 . 33
12 = 22 . 3
ƯCLN (54, 12) = 2 . 3 = 6
Vậy x = 6.
b, 24 : x, 36 : x , 160 : x và x lớn nhất => x = ƯCLN (24, 36, 160).
24 = 23 . 3
36 = 22 . 32
160 = 25 . 5
ƯCLN (24, 36, 160) = 22 = 4
Vậy x = 4.
c, Tìm số tự nhiên a lớn nhất biết rằng 420 : a, 700 : a => a = ƯCLN (420, 700)
420 = 22 . 3 . 5 . 7
700 = 22 . 52 . 7
ƯCLN (420, 700) = 22 . 5 . 7 = 140.
Vậy a = 140