tìm m để hàm sô bậc nhất y=(3m+5)x+m-1 đồng biến trên R
1.Cho hàm số y=(m−2m+3m−2m+3)x-2
a.Tìm m để hàm số trên là hàm sô bậc nhất.
b.Tìm m để hàm số trên là đồng biến.
2.Vẽ đô thị hàm số y=-x +3 và y=2x+1 trên cùng 1 hệ trục tọa độ.
Trả lời giúp mình với ạ!Mình cảm ơn!
Bài 1:
a. $y=(m-2m+3m-2m+3)x-2=3x-2$
Vì $3\neq 0$ nên hàm này là hàm bậc nhất với mọi $m\in\mathbb{R}$
b. Vì $3>0$ nên hàm này là hàm đồng biến với mọi $m\in\mathbb{R}$
Bài 2:
Đồ thị xanh lá cây: $y=-x+3$
Đồ thị xanh nước biển: $y=2x+1$
bài1cho hàm số Y=(2-m)x-2tìm các giá trị của m để HS bậc nhất.tìm hệ số a,b
bài 2, cho hàm số Y=(m-5)x+1.tìm các giá trị để hàm số
a, đồng biến trên R b,nghịch biến trên R
bài 3,cho 2 HS bậc nhất Y=(3-m)\(\times\)x+2(d1) và Y=2x+m(d2)
a,tìm giá trị của m để đồ thị hai hàm số song song với nhau
b,tìm giá trị của m để đồ thị hai hàm số cắt nhau
c,tìm giá trị của m để đồ thị hai hàm số cắt nhau tại 1 điểm trên trục tung
bài 4, cho HS Y=2x=1.tìm hệ số góc ,tung độ gốc,vẽ đồ thị HS trên ,tính góc tạo bởi đường thẳng trên với trục ox
Bài 1:
Để hàm số y=(2-m)x-2 là hàm số bậc nhất thì 2-m<>0
=>m<>2
a=2-m
b=-2
Bài 2:
a: Để hàm số y=(m-5)x+1 đồng biến trên R thì m-5>0
=>m>5
b: Để hàm số y=(m-5)x+1 nghịch biến trên R thì m-5<0
=>m<5
Bài 3:
a: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}3-m=2\\2\ne m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=1\\m\ne2\end{matrix}\right.\Leftrightarrow m=1\)
b: Để (d1) cắt (d2) thì \(3-m\ne2\)
=>\(m\ne1\)
c: Để (d1) cắt (d2) tại một điểm trên trục tung thì
\(\left\{{}\begin{matrix}3-m\ne2\\m=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne1\\m=2\end{matrix}\right.\)
=>m=2
Cho hàm số y = m + 5 m - 5 . x + 2010
Tìm các giá trị của m để hàm số đã cho là hàm số bậc nhất đồng biến trên R.
Với điều kiện m ≥ 0 và m ≠ 5 thì m + 5 > 0. Do đó, điều kiện để hàm số đã cho là hàm số bậc nhất đồng biến trên R là: m - 5 > 0, suy ra m > 5 ⇔ m > 5.
cho hàm số \(y=\left(m^2-3m+2\right).x^2+\left(m-1\right)x+3.\)( m là tham số)
a) tìm m để hàm số trên là hàm số bậc nhất
b)tìm m để hàm số trên đồng biến, nghịch biến
a)Để y là hàm số bậc nhất thì
\(\hept{\begin{cases}m^2-3m+2=0\\m-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}\left(m-1\right)\left(m-2\right)=0\\m-1\ne0\end{cases}}}\)
Từ 2 điều trên suy ra m-2=0
=>m=2
Vậy m=2
cho d y=(m²+3m-4)x-1 tìm m để d là hàm số bậc nhất b)d đồng biến c)nghịch biến
\(a,\Leftrightarrow m^2+3m-4\ne0\\ \Leftrightarrow\left(m+4\right)\left(m-1\right)\ne0\\ \Leftrightarrow\left\{{}\begin{matrix}m\ne-4\\m\ne1\end{matrix}\right.\\ b,\Leftrightarrow\left(m+4\right)\left(m-1\right)>0\Leftrightarrow\left[{}\begin{matrix}m>1\\m< -4\end{matrix}\right.\\ c,\Leftrightarrow\left(m+4\right)\left(m-1\right)< 0\\ \Leftrightarrow-4< m< 1\)
Cho hàm số : y = ( m - 5 )x+1 ( m là tham số )
a) tìm m để hàm số trên là hàm số bậc nhất
b) Với giá trị nào của m thì hàm số trên đồng biến ; nghịch biến trên R ?
ĐK để hàm số trên là hàm bậc nhất => m-5 khác 0 => m khác 5
b) m-5>0 => hàm số đồng biến
m-5<0 => hàm số ngịch biến
Cho hàm số bậc nhất y=(m+1)x+5
a) Tìm giá trị của m để hàm số trên là đồng biến, nghịch biến
a) Tìm giá trị của m để hàm số trên là đồng biến, nghịch biến
Hàm số trên là đồng biến khi và chỉ khi :
m + 1 > 0 ⇔ m > -1
Hàm số trên là nghịch biến khi và chỉ khi :
m + 1 < 0 ⇔ m < -1
Câu 1: cho hàm số y=\(\dfrac{\sqrt{m}+3}{\sqrt{m}-2}x-10\)
a,tìm x để hàm số trên là hàm số bậc nhất
b, tìm m để hàm số trên đồng biến trên R
a: Để hàm số trên là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m\ge0\\m\ne4\end{matrix}\right.\)
b: Để hàm số đồng biến thì \(\sqrt{m}-2>0\)
hay m>4
cho (d) y = ( m2 + 3m - 4 ) x -1 .
a) tìm m để (d) là hàm số bậc nhất b) ( d) đồng biến c) (d) nghịch biến
a: Để (d) là hàm số bậc nhất thì \(m^2+3m-4< >0\)
=>\(\left(m+4\right)\left(m-1\right)< >0\)
=>\(m\notin\left\{-4;1\right\}\)
b: Để (d) đồng biến thì \(m^2+3m-4>0\)
=>(m+4)(m-1)>0
=>m>1 hoặc m<-4
c: Để (d) nghịch biến thì m^2+3m-4<0
=>(m+4)(m-1)<0
=>-4<m<1