chúng tỏ rằng 10^9+8 chia hết cho 9
Chúng tỏ rằng: 5^10+5^9+5^8 chia hết cho 31
Ta có : 510 + 59 + 58
= 58 . ( 1 + 5 + 52 )
= 58 . 31 \(⋮\)31
Vậy : 510 + 59 + 58 \(⋮\)31
Chứng tỏ rằng
a) 8^10-8^9-8^8 chia hết cho 55
b) 81^7-27^9-9^13 chia hết cho 45
c) 7^6 +7^5-7^4 chia hết cho 11
d) 10^9+10^8+10^7 chia hết cho 555
a, Đặt A = 810 - 89 - 88 = 88.82 - 88.81 - 88.1 = 88.(82 - 81 -1) = 88.55
Vì 55 chia hết cho 55 nên 88 chia hết cho 55 hay A chia hết cho 55.
b, Đặt B = 76 + 75 - 74 = 74.72 + 74.71 + 74.1 = 74.(72 + 71 - 1) = 74.55
Vì 55 chia hết cho 55 nên 74.55 chia hết cho 55 hay B chia hết cho 55.
c, Đặt C = 817 - 279 - 913 = (34)7 - (33)9 - (32)13 = 328 - 327 - 326 ( Đến dây thì tương tự như phần a bạn nhé)
d, Phần này cũng tương tự phần a.
Giải:
a) \(8^{10}-8^9-8^8=8^8.\left(8^2-8-1\right)=8^8.55⋮5\)
\(\Rightarrow8^{10}-8^9-8^8⋮55\left(đpcm\right)\)
b) \(81^7-27^9-9^{13}=3^{28}-3^{27}-3^{26}=3^{24}\left(3^4-3^3-3^2\right)=3^{24}.45⋮5\)
\(\Rightarrow81^7-27^9-9^{13}⋮45\left(đpcm\right)\)
c) \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.55⋮11\left(55⋮11\right)\)
\(\Rightarrow7^6+7^5-7^4⋮11\left(đpcm\right)\)
d) \(10^9+10^8+10^7=10^6.\left(10^3+10^2+10\right)=10^7.1110⋮555\left(1110⋮555\right)\)
\(\Rightarrow10^9+10^8+10^7⋮555\left(đpcm\right)\)
Chứng tỏ rằng
a) 8^10-8^9-8^8 chia hết cho 55
b) 81^7-27^9-9^13 chia hết cho 45
c) 7^6 +7^5-7^4 chia hết cho 11
d) 10^9+10^8+10^7 chia hết cho 555
Câu hỏi của Asari Tinh Nghịch - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo bài làm của bạn ST nhé!
Chứng tỏ rằng:8^10-8^8-8^9 chia hết cho 55
7^6+7^5-7^4 chia hết cho11
81^7-27^9-9^13 chia hết cho 45
109+10^8+10^7 chia hết cho 555
a, 810 - 89 - 88 = 88(82 - 8 - 1) = 88.55 chia hết cho 55
b, 76 + 75 - 74 = 74(72 + 7 - 1) = 74.55 = 74.5.11 chia hết cho 11
c, 817 - 279 - 913 = 328 - 327 - 326 = 324(34 - 33 - 32) = 324.45 chia hết cho 45
d, 109 + 108 + 107 = 106(103 + 102 + 10) = 106.1110 = 106.2.555 chia hết cho 555
tại sao lại là (82 - 8 - 1) có ai giải thích hộ mình ko
chứng tỏ rằng :
a) 10^9+10^8+10^7 chia hết cho 555
B)81^7 - 27^9 - 9^13 chia hết cho 45
a) chứng tỏ rằng (101234+2)chia hết cho 3
b)chứng tỏ rằng (10789 +8) chia hết cho 9
a)101234+2)=10+2=12
Vì 12 chia hết cho 3 nên (101234+2)chia hết cho 3
b)(10789+8)=10+8=18
Vì 18 chia hết 9 nên (10799+8) chia hết cho 9
chứng tỏ rằng: (10^28+8) chia hết cho 9
1. chứng tỏ rằng
a. 81 mũ 7 - 27 mũ 9 - 9 mũ 13 chia hết cho 45
b. 10 mũ 9 + 10 mũ 8 + 10 mũ 7 chia hết cho 222
\(81^7 - 27^9 - 9^{13}\\ = (3^4)^7 - (3^3)^9 - (3^2)^{13} \\ = 3^{4.7} - 3^{3.9} - 3^{2.13} \\ = 3^{28} - 3^{27} - 3^{26} \\ = 3^{24}(3^4-3^3-3^2) \\ = 3^{24}(81-27-9) \\ =3^{24} . 45 \vdots 45 \)
\(10^9+10^8+10^7\\=10^6(10^3+10^2+10)\\=10^6(1000+100+10)\\=10^6 . 1110 \\ =10^6 . 5 .222\vdots 222\)
Chứng tỏ rằng:
a) Số 10^10+8 chia hết cho 2,3 và 9
b) Số 10^100+5 chia hết cho 3 và 5
c) Số 10^50+44 chia hết cho 2 và 9
bạn nghe cô giáo giảng là dc mà :D
nha bạn :):)))