Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Đức Anh
Xem chi tiết
Lê Đức Anh
20 tháng 7 2016 lúc 19:10

Ta có: A = 1/2+1/3+1/4+...+1/62+1/63+1/64

A = 1+(1/2+1/3+1/4)+(1/5+1/6+1/7+1/8)+(1/9+1/10+...+1/16)+...+(1/17+1/18+....+1/32)+(1/33+1/34+...+1/64)

Ta có: 1/2+1/3+1/4>1/2+1/4+1/4=1

1/5+1/6+1/7+1/8>1/8+1/8+1/8+1/8=1/8.4=1/2

1/9 +1/10+...+1/16>1/16+1/16+...1/16=1/16.8=1/2

1/33+1/34+...+1/64>1/64+1/64+...+1/64=1/64.32=1/2

Vậy A > 4

Lê Đức Anh
17 tháng 7 2016 lúc 19:56

Xin ai giải hộ cái

nguyen hong phuc
6 tháng 7 2017 lúc 9:36

Ta có A = 1 + 1/2 + 1/3 + 1/4 + 1/5 + ... + 1/64

          A = 1 + (1/2 + 1/3 + 1/4) + (1/5 + 1/6 + ... + 1/8) + (1/9 + 1/10 + 1/11 + ... + 1/16) + (1/17 + 1/18 + 1/19 + ... + 1/32) + (1/33 + 1/34 + 1/35 + ... + 1/64)

=> A > 1 +  (1/2 + 1/4.2) + 1/8.4 + 1/16.8 + 1/32.16 + 1/64.32

     A > 1 + 1 + 1/2 + 1/2 + 1/2 + 1/2

    A > 4 (DPCM).

Thanhtam Mu Rom
Xem chi tiết
Thanhtam Mu Rom
5 tháng 5 2017 lúc 20:53

giúp mình nhé

Mới vô
7 tháng 5 2017 lúc 8:34

\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{63}+\dfrac{1}{64}\\ =\dfrac{1}{2}+\left(\dfrac{1}{3}+\dfrac{1}{4}\right)+\left(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}\right)+\left(\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{16}\right)+\left(\dfrac{1}{17}+\dfrac{1}{18}+...+\dfrac{1}{32}\right)+\left(\dfrac{1}{33}+\dfrac{1}{34}+...+\dfrac{1}{64}\right)\)

Ta thấy:

\(\dfrac{1}{3}\) lớn hơn \(\dfrac{1}{4}\)

\(\dfrac{1}{5};\dfrac{1}{6};\dfrac{1}{7}\) lớn hơn \(\dfrac{1}{8}\)

\(\dfrac{1}{9};\dfrac{1}{10};...;\dfrac{1}{15}\) lớn hơn \(\dfrac{1}{16}\)

\(\dfrac{1}{17};\dfrac{1}{18};...;\dfrac{1}{31}\) lớn hơn \(\dfrac{1}{32}\)

\(\dfrac{1}{33};\dfrac{1}{34};...;\dfrac{1}{63}\) lớn hơn \(\dfrac{1}{64}\)

\(\Rightarrow\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{64}>\dfrac{1}{2}+\left(\dfrac{1}{4}+\dfrac{1}{4}\right)+\left(\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{8}\right)+\left(\dfrac{1}{16}+\dfrac{1}{16}+...+\dfrac{1}{16}\right)+\left(\dfrac{1}{32}+\dfrac{1}{32}+...+\dfrac{1}{32}\right)+\left(\dfrac{1}{64}+\dfrac{1}{64}+...+\dfrac{1}{64}\right)\\ \dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{64}>\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}\\ \dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{64}>3\)

Vậy \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{64}>3\)(ĐPCM)

Xem chi tiết
nguyen hoa
Xem chi tiết
nguyen hoa
4 tháng 3 2016 lúc 18:47

các bạn giúp mình nhé, người làm nhanh và đúng sẽ được mình k nhé

Nguyệt Nguyễn
7 tháng 4 2024 lúc 19:26

Ta có: A = 1/2+1/3+1/4+...+1/62+1/63+1/64

A = 1+(1/2+1/3+1/4)+(1/5+1/6+1/7+1/8)+(1/9+1/10+...+1/16)+...+(1/17+1/18+....+1/32)+(1/33+1/34+...+1/64)

Ta có: 1/2+1/3+1/4>1/2+1/4+1/4=1

1/5+1/6+1/7+1/8>1/8+1/8+1/8+1/8=1/8.4=1/2

1/9 +1/10+...+1/16>1/16+1/16+...1/16=1/16.8=1/2

1/33+1/34+...+1/64>1/64+1/64+...+1/64=1/64.32=1/2

Vậy A > 4

Ngọc Lan
Xem chi tiết
Mạnh Hùng Phan
13 tháng 4 2019 lúc 16:04

A=1+(1/2 + 1/3 + 1/4)+(1/5 + 1/6 + 1/7 + 1/8)+(1/9+...+1/16)+(1/17+...+1/32)+(1/33+...+1/64)

A>1+(1/2 + 1/4 + 1/4)+(1/8+ 1/8+ 1/8+ 1/8)+(1/16+1/16+...+1/16)+(1/64+...+1/64)

A>1 + 1 + 1/2 + 1/2 + 1/2+ 1/2

A>4

Lê Minh Trang
Xem chi tiết
Nguyễn Hà Thảo Vy
Xem chi tiết
Nguyễn Hà Thảo Vy
Xem chi tiết
Nguyen Trung Kien
Xem chi tiết
Vũ Huyền Nga
27 tháng 12 2017 lúc 18:43

Ta có : 

A= 1+ 1/2 + 1/3 +1/4 + ...+ 1/63 + 1/64 

   =1 + ( 1/2 + 1/3 + 1/4 ) + ( 1/5 +1/6 + ..+1/8 ) + ( 1/9 + 1/10 + ..+ 1/16 ) + ( 1/17  + 1/18 + ...+ 1/32 ) + ( 1/33 + 1/34 + ...+1/63 + 1/64 ) 

=> A > 1 + ( 1/2 + 1/4.2 ) + 1/8.4 + 1/16.8 + 1/32.16 + 1/64.32 

     A > 1 + 1/2 + 1/2 + 1/2 +1/2 

  =>A > 4

Nguyen Trung Kien
27 tháng 12 2017 lúc 18:50

thanks