A=1+(1/2 + 1/3 + 1/4)+(1/5 + 1/6 + 1/7 + 1/8)+(1/9+...+1/16)+(1/17+...+1/32)+(1/33+...+1/64)
A>1+(1/2 + 1/4 + 1/4)+(1/8+ 1/8+ 1/8+ 1/8)+(1/16+1/16+...+1/16)+(1/64+...+1/64)
A>1 + 1 + 1/2 + 1/2 + 1/2+ 1/2
A>4
A=1+(1/2 + 1/3 + 1/4)+(1/5 + 1/6 + 1/7 + 1/8)+(1/9+...+1/16)+(1/17+...+1/32)+(1/33+...+1/64)
A>1+(1/2 + 1/4 + 1/4)+(1/8+ 1/8+ 1/8+ 1/8)+(1/16+1/16+...+1/16)+(1/64+...+1/64)
A>1 + 1 + 1/2 + 1/2 + 1/2+ 1/2
A>4
Chứng tỏ rằng tổng của các phân số sau đây lớn hơn \(\frac{1}{2}\) :
S = \(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{98}+\frac{1}{99}\)
\(\frac{1}{3}\)+\(\frac{-2}{5}\)+\(\frac{1}{6}\)+\(\frac{-1}{5}\)<x<\(\frac{-3}{4}\)+\(\frac{2}{7}\)+\(\frac{-1}{4}\)+\(\frac{3}{5}\)+\(\frac{5}{7}\)
tính nhanh
\(5\frac{2}{7}.\frac{8}{11}+5\frac{2}{7}.\frac{5}{11}-5\frac{2}{7}.\frac{2}{11}\)
\(\left(\frac{67}{111}+\frac{2}{33}-\frac{15}{117}\right).\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{12}\right)\)
1.tính nhanh các tổng sau
a) A=\(\frac{20}{19}+\frac{22}{37}+\frac{18}{43}\) và B=\(\frac{14}{39}+\frac{22}{39}+\frac{18}{41}\)
b) A=\(\frac{3}{8^3}+\frac{7}{8^4}\) và B=\(\frac{7}{8^3}+\frac{3}{8^4}\)
2.tìm x \(\in\) z biết
a) \(\frac{x-1}{6}=\frac{1}{6}\)
b) \(\frac{x-2}{5}=\frac{8}{10}\)
c) \(\frac{x-1}{8}=\frac{1}{2}\)
\(\frac{-2}{5}+\frac{3}{7}+\frac{-3}{5}+\frac{1}{2}+\frac{4}{7}\)
1. tính nhanh các tổng sau
a) A=\(\frac{20}{39}+\frac{22}{37}+\frac{18}{43}vàB=\frac{14}{39}+\frac{22}{39}+\frac{18}{41^{ }}\)
b) A=\(\frac{3}{8^3}+\frac{7}{8^4}\)và B=\(\frac{7}{8^3}+\frac{3}{8^4}\)
Tính nhanh: C=\(\frac{1}{3.5}\)+\(\frac{1}{5.7}\)+\(\frac{1}{7.9}\)+...+\(\frac{1}{37.39}\)
Tính nhanh giá trị của biểu thức sau:
a) A=\(\frac{-2}{15}+\frac{7}{31}+\frac{-13}{15}\)
b) B=\(\frac{-6}{13}+\left[\frac{-7}{13}+1\right]\)
c) C=\(\frac{3}{5}+\left[\frac{5}{7}+\frac{-3}{5}\right]\)
Cho :
\(A=40+\frac{3}{8}+\frac{7}{8^2}+\frac{5}{8^3}+\frac{32}{8^5}\)
\(B=\frac{24}{8^2}+40+\frac{5}{8^2}+\frac{40}{8^2}+\frac{5}{8^4}\)
Hãy so sánh A với B.