1) 4.52-32:24
2) 9.8.14+6.(-17).(-12)+19.(-4).18
9.8.14+6.(-17).(-12)+19.(-4).18
a) 9.8.14 + 6.(-17)(-12) + 19.(-4).18
b) 1 - 2 + 3 - 4 + 5 - ........... + 2015
a) \(9\cdot8\cdot14+6\cdot\left(-17\right)\cdot\left(-12\right)+19\cdot\left(-4\right)\cdot18\)
\(=1008+1224-1368\\ =864\)
b) \(1-2+3-4+5-...+2015\)
\(=\left(1-2\right)+\left(3-4\right)+...+\left(2013-2014\right)+2015\) (1007 ngoặc đơn)
\(=-1-1-1-..-1+2015\)
\(=-1\cdot1007+2015\\ =-1007+2015\\ =1008\)
Thực hiện phép tính:
a) 4.52 -32:25
b)9.8.14+ 6.(-17)(-12)+19.(-4).18
c)\(\left(\dfrac{-1}{2}\right)\)3-2.\(\left(\dfrac{-1}{2}\right)^{2^{ }}+3.\left(\dfrac{-1}{2^{ }}\right)+1\)
a) \(4.5^2-32:2^5\)
\(=4.25-2^5:2^5\)
\(=100-1\)
\(=99.\)
b) \(9.8.14+6.\left(-17\right)\left(-12\right)+19.\left(-4\right).18\)
\(=9.2.4.14+6.3.\left(-4\right)\left(-17\right)+76.18\)
\(=18.56+18.68+18.76\)
\(=18\left(56+68+76\right)\)
\(=18\left(132+68\right)\)
\(=18.200\)
\(=3600.\)
c) \(\left(\dfrac{-1}{2}\right)^3-2.\left(\dfrac{-1}{2}\right)^2+3.\left(\dfrac{-1}{2}\right)+1\)
\(=\left(\dfrac{-1}{2}\right)\left[\left(\dfrac{-1}{2}\right)^2+2.\dfrac{-1}{2}+3\right]+1\)
\(=\left(\dfrac{-1}{2}\right)\left[\dfrac{1}{4}+\left(-1\right)+3\right]+1\)
\(\)\(=\left(\dfrac{-1}{2}\right)\left[\dfrac{1}{4}+2\right]+1\)
\(=\left(\dfrac{-1}{2}\right).\dfrac{9}{4}+1\)
\(=\dfrac{-9}{8}+1\)
\(=\dfrac{-1}{8}\)
Tính nhanh:
a)\(9.8.14+6.\left(-17\right).\left(-12\right)+19.\left(-4\right).18\)
b)\(1-3+3^2-3^3+3^4-3^5+.....+3^{2014}-3^{2015}\)
các bn làm câu nào cx đc
a) =9x8x14+6x17x12+19x18x(-4)
=3x3x2x2x2x2x7+2x2x2x3x3x17-19x3x3x2x2x2
=2x2x2x3x3x(2x7+17-19)
=72x12
=864
1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+30+31+32+32+...+1000000
số số hạng là :
( 1000000 - 1 ) : 1 + 1 = 1000000
tổng là :
( 1000000 + 1 ) x 1000000 : 2 = 500000500000
đáp số : 500000500000
Bài 1. Chứng tỏ rằng với \(\forall\) n \(\in\) N thì \(\dfrac{12n+1}{30n+2}\) là phân số tối giản.
Bài 2. Thực hiện phép tính ( Theo cách hợp lý )
a, A = 9.8.14 + 6. (-17) . (-12) + 19.(-4).18
b, B = 1 - 6 + 11 - 6 + ... + 2011 - 2016
c, C = \(\dfrac{2^9.15^{17}.75^3}{18^8.5^{24^{ }}.9^2}\)
Bài 1.
Đặt (12n + 1; 30n + 2) = d
\(\Rightarrow\) \(\left\{{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}60n+5⋮d\\60+4⋮d\end{matrix}\right.\)
\(\Rightarrow\) (60n + 5) - (60n + 4) \(⋮\) d
\(\Rightarrow\) 1 \(⋮\) d
\(\Rightarrow\) d = 1
\(\Rightarrow\) (12n + 1; 30n + 2) = 1
Vậy phân số \(\dfrac{12n+1}{30n+2}\) là phân số tối giản
câu trả lời cho câu hỏi của Huong Le Thị Lan: 1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+21+22+23+24+25+26+27+28+29+30+31+32.
=(1+32)+(2+31)+(3+30)+(4+29)+(5+28)+(6+27)+(7+26)+(8+25)+(9+24)+(10+23)+(11+22)+(12+21)+(13+20)+(14+19)+(15+18)+(16+17)
=33+33+33+33+33+33+33+33+33+33+33+33+33+33+33+33. =33.16 (dấu chấm là dấu nhân)=528
wow! mù mắt. Ido tính toán có khác!
C2:(32+1)x32:2=528
bạn tính thử xem đúng đấy.
1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+21+22+23+24+25+26+27+28+29+30+31+32+33+34+35+36+37=
1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+21+22+23+24+25+26+27+28+29+30+31+32+33+34+35+36+37
=(1+37)x37:2
=703
tính : a) 2/3 *( 2/18+6/12-3/33 ) b) 6/14+4/25-5/10*3/16 c)5/25*(9/18+16/32-12/46) + 9/17 d)11/32:(14/18-16/27) + (2/3-5/15) e) ( 1/9+2/17)+3/6-(12/17-1/2) +5/9