Cho ∆ ABC có AB = AC , kẻ BD Vuông góc AC, CE vuông góc AB ( D thuộc AC, E thuộc AB ). Gọi O là giao điểm của BD và CE. Chứng minh
a) BD = CE
b)∆ OEB = ∆ ODC
c) AO là tia phân giác của góc BAC.
d) CMR: AO đi qua trung điểm của BC.
cho tam giác abc có ab=ac kẻ bd vuông góc với ac ,ce vuông góc với ab (d thuộcac,e thuộc ab) o là giao điểm của bd và ce chứng minh
a)bd=ce
b)tam giác obe=tam giác odc
c) oa là phân giác của góc bac
Cho △ABC có AB = AC; kẻ BD⊥AC, CE⊥AB ( D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. Chứng minh.
A/ BD=CE
B/ △OFB=△ODC
C/ AO là tia phân giác của góc BAC
Lời giải:
a. Xét tam giác $ABD$ và $ACE$ có:
$\widehat{A}$ chung
$\widehat{ADB}=\widehat{AEC}=90^0$
$AB=AC$ (gt)
$\Rightarrow \triangle ABD=\triangle ACE$ (ch-gn)
$\Rightarrow BD=CE$
b. Từ tam giác bằng nhau phần a suy ra $AD=AE$
Mà $AB=AC$
$\Rightarrow AB-AE=AC-AD$ hay $BE=CD$
Xét tam giác $OEB$ và $ODC$ có:
$\widehat{EOB}=\widehat{DOC}$ (đối đỉnh)
$\widehat{OEB}=\widehat{ODC}=90^0$
$EB=DC$ (cmt)
$\Rightarrow \triangle OEB=\triangle ODC$ (ch-cgv)
c.
Từ tam giác bằng nhau phần b suy ra $OB=OC$
Xét tam giác $ABO$ và $ACO$ có:
$AO$ chung
$AB=AC$ (gt)
$BO=CO$ (cmt)
$\Rightarrow \triangle ABO=\triangle ACO$ (c.c.c)
$\Rightarrow \widehat{BAO}=\widehat{CAO}$
$\Rightarrow AO$ là tia phân giác $\widehat{BAC}$ (đpcm)
cho tam giác ABC có AB = AC, kẻ BD vuông góc AC, CE vuông góc AB ( D thuộc AC, E thuộc AB). gọi O là giao điểm của BD và CE. chứng min
a) BD=CE
b) tam giác OEB= tam giác OCD
c) AO là tia phân giác của góc BAC ( lời giải chi tiết và hình vẽ )
Cho tam giác ABC có AB=AC. Kẻ BD vuông góc AC ( D thuộc AC), CE vuông góc AB ( E thuộc AB). Gọi O là giao điểm của BD và CE. Chứng minh:
a) BD=CE
b) tam giác OEB= tam giác ODC
c) AO là tia phân giác của góc BAC
(Bạn tự vẽ hình nha!)
a) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có:
AB=AC (gt)
A là góc chung
Do đó, ............... (ch-gn)
=> BD=CE (2 cạnh tương ứng)
b) Vì AB=AC nên tam giác ABC là tam giác cân tại A => B=C => B1 + B2 = C1 + C2
Mà B1 = C1 (vì tam giác ABD= tam giác ACE) nên B2= C2
Xét tam giác BEC vuông tại E và tam giác CDB vuông tại D có:
BD=CE (cmt)
B2= C2 (cmt)
Do đó,.......... (ch-gn)
=> BE=DC (2 cạnh tương ứng)
Xét tam giác OBE vuông tại E và tam giác OCD vuông tại D có:
BE= DC (cmt)
B1 = C1 (cmt)
Do đó tam giác OBE= tam giác OCD (cgv-gnk)
c) Ta có: AB=AC (gt) => AE+EB= AD+DC
Mà BE=DC (cmt) nên AE=AD
Xét tam giác ADO và tam giác AEO có:
EO=OD ( vì tam giác OBE= tam giác OCD)
AE=AD (cmt)
AO là cạnh chung
Do đó,.................(c.c.c)
=> A1= A2 ( 2 góc tương ứng)
=> AO là tia phân giác góc A
Vậy AO là tia phân giác góc BAC.
Cho tam giác ABC có AB = AC , kẻ BD vuông góc AC , CE vuông góc AB ( D thuộc AC , E thuộc AB ) . Gọi O là giao điểm của BD và CE . Chứng minh
a, BD = CE
c , Tam giác OEB = ODC
c, AO là tia phân giác của góc BAC
Cho tam giác ABC , có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB (D thuộc AC; E thuộc AB); gọi Ở là giao điểm của BD và CE. Chứng minh:
a, BD=CE
b, tam giác OEB=tam giác ODC
c, AO là tia phân giác của BAC
d,H là trung điểm của BC. Chứng minh A,O,H thẳng hàng.
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔADB=ΔAEC
=>BD=CE
b: ΔABD=ΔACE
=>\(\widehat{ABD}=\widehat{ACE}\)
=>\(\widehat{OBE}=\widehat{OCD}\)
ΔABD=ΔACE
=>AD=AE
AE+EB=AB
AD+DC=AC
mà AE=AD và AB=AC
nên EB=DC
Xét ΔOEB vuông tại E và ΔODC vuông tại D có
EB=DC
\(\widehat{OBE}=\widehat{OCD}\)
Do đó: ΔOEB=ΔODC
c: ΔOEB=ΔODC
=>OB=OC
Xét ΔABO và ΔACO có
AB=AC
BO=CO
AO chung
Do đó: ΔABO=ΔACO
=>\(\widehat{BAO}=\widehat{CAO}\)
=>AO là phân giác của góc BAC
d: Ta có: ΔABC cân tại A
mà AH làđường trung tuyến
nên AH là phân giác của góc BAC
mà AO là phân giác của góc BAC(cmt)
và AO,AH có điểm chung là A
nên A,O,H thẳng hàng
Cho Tam giác ABC có AB=AC . Kẻ BD vuông góc với AC .CE vuông góc với AB (D thuộc AC , E thuộc AB ) . Gọi O là giao điểm của BD và CE
a) CM BD=CE
b) Tam giác OEB = Tam giác OCD
c) AO là tia phân giác của góc BAC
Cho tam giác ABC có AB=Ac, kẻ BD vuông góc AC, CE vuông góc AB (D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. Chứng minh:
a/ BD=CE
b/ Tam giác OEB=tam giác ODC
c/ AO là tia p/g của góc BAC
Cho tam giác ABC có AB=AC . Kẻ BD vuông góc với AC,CE vuông góc với AB ( D thuộc AC, E thuộcAB) . Gọi O là giao điểm của BD và CE . Chứng minh
a) BD=CE
b)Tam giác OEB= ODC
C) AO là tia phân giác của góc BAC
A) \(\Delta ABC\)CÂN TẠI A
\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)
XÉT \(\Delta BDA\)VUÔNG TẠI D VÀ\(\Delta CEA\)VUÔNG TẠI E CÓ
\(BA=CA\left(GT\right)\)
\(\widehat{A}\)LÀ GÓC CHUNG
=>\(\Delta BDA\)=\(\Delta CEA\)( CẠNH HUYỀN - GÓC VUÔNG )
=> BD = CE HAI CẠNH TƯƠNG ỨNG ( ĐPCM )
B) VÌ \(\Delta BDA\)=\(\Delta CEA\)(CMT)
=> DA = EA ( HAI CẠNH TƯƠNG ỨNG ); \(\widehat{ABD}=\widehat{ACE}\)HAY \(\widehat{EBO}=\widehat{DCO}\)( HAI GÓC TƯƠNG ỨNG )
MÀ \(BE+EA=AB\)
\(CD+DA=AC\)
MÀ AB = AC (CMT); DA = EA (CMT)
=> BE = CD
XÉT \(\Delta OEB\)VÀ\(\Delta ODC\)CÓ
\(\widehat{BEO}=\widehat{CDO}=90^o\)
\(EB=DC\left(CMT\right)\)
\(\widehat{EBO}=\widehat{DCO}\)
=>\(\Delta OEB\)=\(\Delta ODC\)(G-C-G)
C) VÌ \(\Delta OEB=\Delta ODC\left(CMT\right)\)
=> OE = OD
XÉT \(\Delta AEO\)VÀ\(\Delta ADO\)CÓ
\(AE=AD\left(CMT\right)\)
\(\widehat{AEO}=\widehat{ADO}=90^o\)
OE = OD (CMT)
=>\(\Delta AEO\)=\(\Delta ADO\)(C-G-C)
=> \(\widehat{EAO}=\widehat{DAO}\)HAI GÓC TƯƠNG ỨNG
MÀ AO ẰM GIỮA AE VÀ AD
=> AO LÀ PHÂN GIÁC CỦA \(\widehat{EAD}\)
HAY AO LÀ PHÂN GIÁC CỦA \(\widehat{BAC}\)
(HÌNH BẠN TỰ VẼ NHA)
A) ΔABC ΔABC CÂN TẠI A
⇒{AB=ACˆB=ˆC⇒\hept{AB=ACB^=C^
XÉT ΔBDAΔBDAVUÔNG TẠI D VÀΔCEAΔCEAVUÔNG TẠI E CÓ
BA=CA(GT)BA=CA(GT)
ˆAA^LÀ GÓC CHUNG
=>ΔBDAΔBDA=ΔCEAΔCEA( CẠNH HUYỀN - GÓC VUÔNG )
=> BD = CE HAI CẠNH TƯƠNG ỨNG ( ĐPCM )
B) VÌ ΔBDAΔBDA=ΔCEAΔCEA(CMT)
=> DA = EA ( HAI CẠNH TƯƠNG ỨNG ); ˆABD=ˆACEABD^=ACE^HAY ˆEBO=ˆDCOEBO^=DCO^( HAI GÓC TƯƠNG ỨNG )
MÀ BE+EA=ABBE+EA=AB
CD+DA=ACCD+DA=AC
MÀ AB = AC (CMT); DA = EA (CMT)
=> BE = CD
XÉT ΔOEBΔOEBVÀΔODCΔODCCÓ
ˆBEO=ˆCDO=90oBEO^=CDO^=90o
EB=DC(CMT)EB=DC(CMT)
ˆEBO=ˆDCOEBO^=DCO^
=>ΔOEBΔOEB=ΔODCΔODC(G-C-G)