Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Hieu Linh
Xem chi tiết
Phuongthao Bui
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 10 2023 lúc 20:29

loading...  loading...  

anh ha
Xem chi tiết
Nguyễn Ngọc Huy Toàn
7 tháng 3 2022 lúc 7:19

1.

Ta có:

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

Mà \(\widehat{B}=\widehat{C}\)

\(\Rightarrow\widehat{A}+\widehat{C}+\widehat{C}=180^0\)

\(\widehat{A}=180^0-2.65^0\)

\(\widehat{A}=50^0\)

2.

Áp dụng định lý pitago, ta có:

\(DF^2=DE^2+EF^2\)

\(\Rightarrow EF=\sqrt{DF^2-DE^2}=\sqrt{17^2-8^2}=\sqrt{225}=15cm\)

Ta có:

\(DF>EF>DE\)

\(\Rightarrow\widehat{E}>\widehat{D}>\widehat{F}\)

Duy Nam
7 tháng 3 2022 lúc 7:24

1.

Ta có:

ˆA+ˆB+ˆC=1800A^+B^+C^=1800

Mà ˆB=ˆCB^=C^

⇒ˆA+ˆC+ˆC=1800⇒A^+C^+C^=1800

ˆA=1800−2.650A^=1800−2.650

ˆA=500A^=500

2.

Áp dụng định lý pitago, ta có:

DF2=DE2+EF2DF2=DE2+EF2

⇒EF=√DF2−DE2=√172−82=√225=15cm⇒EF=DF2−DE2=172−82=225=15cm

Ta có:

DF>EF>DEDF>EF>DE

⇒ˆE>ˆD>ˆF

jewel forest
Xem chi tiết
chibi trương
Xem chi tiết
Phương
26 tháng 10 2018 lúc 16:12

GIẢI: 
sinB=3/4 =>cosC=3/5
Ta có: cos^2 C+sin^2 C=1 => sin^2C=1-(3/5)^2=7/16 
=>sinC=(√7)/5
=>tanC=sinC/cosC=[(√7)/5]/(3/)=(√7)/5

Không cần biết
Xem chi tiết
huy hoàng
Xem chi tiết
Dũng Quang
Xem chi tiết
Trên con đường thành côn...
5 tháng 1 2022 lúc 20:00

Áp dụng định lý Pytago vào ΔABC vuông tại A ta có:

\(BC^2=AB^2+AC^2=6^2+8^2\Leftrightarrow BC=10\left(cm\right)\)

\(\Rightarrow sinC=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\)

 

Thanh Hoàng Thanh
5 tháng 1 2022 lúc 20:01

undefined

demonzero
5 tháng 1 2022 lúc 20:13

BC2=AB2+AC2=62+82⇔BC=10(cm)BC2=AB2+AC2=62+82⇔BC=10(cm)

Hoàng Phúc
Xem chi tiết
Lê Hà Phương
2 tháng 8 2016 lúc 12:07

a) Ta thấy: \(AB.AC=BC.AH\)

\(\Leftrightarrow AB^2.AC^2=BC^2.AH^2\)

\(\Leftrightarrow AH^2=\frac{AB^2.AC^2}{BC^2}\)

\(\Leftrightarrow AH^2=\frac{AB^2.AC^2}{AB^2+AC^2}\)

\(\Leftrightarrow\frac{1}{AH^2}=\frac{AB^2+AC^2}{AB^2.AC^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)

Ta có: \(\frac{AB}{AC}=\frac{5}{7}\Rightarrow AB:AC=\frac{5}{7}\Rightarrow AB=\frac{5}{7}AC\)

Áp dụng công thức trên: \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{15^2}=\frac{1}{\frac{25}{49}AC^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{225}=\frac{49}{25}.\frac{1}{AC^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{225}=\frac{1}{AC^2}\left(\frac{49}{25}+1\right)\)

\(\Rightarrow\frac{1}{225}=\frac{1}{AC^2}.\frac{74}{25}\Rightarrow\frac{1}{AC^2}=\frac{1}{225}.\frac{25}{74}=\frac{1}{666}\Rightarrow AC^2=666\Rightarrow AC=\sqrt{666}=3\sqrt{74}cm\)

Do đó: \(AB=\frac{5}{7}.3\sqrt{74}=\frac{15\sqrt{74}}{7}cm\)

Xét tam giác ABH có: \(AH^2+BH^2=AB^2\Leftrightarrow15^2+BH^2=\left(\frac{15\sqrt{74}}{7}\right)^2\Leftrightarrow BH^2=\frac{16650}{49}-225=\frac{5625}{49}\)

\(\Rightarrow BH=\frac{\sqrt{5625}}{\sqrt{49}}=\frac{75}{7}cm\)

Xét tam giác ACH có: \(AH^2+HC^2=AC^2\Leftrightarrow15^2+HC^2=666\Leftrightarrow HC^2=666-225=441\)

\(\Rightarrow HC=\sqrt{441}=21cm\)

Vậy: \(BH=\frac{75}{7}cm\) và \(HC=21cm\)

b) Chu vi tam giác ABC là: \(AB+AC+BC=\frac{15\sqrt{74}}{7}+3\sqrt{74}+21+\frac{75}{7}\approx76cm\)

Minato Namikaze
1 tháng 8 2016 lúc 22:28

A B C H 15 cm

Vì tam giác ABC vuông tại A => góc B + góc C = 90o

Vì tam giác HAC vuông tại H => góc HAC + góc C = 90o

=> góc HAC = góc B

Xét tam giác HAC và tam giác HBA có:

     góc HAC = góc B (cmt)

     góc AHC = góc AHB (=90o)

=> tam giác HAC đồng dạng với tam giác HBA (TH3)

=> \(\frac{AC}{AB}=\frac{AH}{BH}=\frac{HC}{AH}=\frac{7}{5}\)

=> \(HC=15.\frac{7}{5}=21\left(cm\right);HB=15.\frac{5}{7}=\frac{75}{7}\left(cm\right)\)

Sau đó tính AB; AC; BC. Ngại là lắm, làm nốt nhá ._.

Lê Hà Phương
1 tháng 8 2016 lúc 22:47

a) Ta có: \(\frac{AB}{AC}=\frac{5}{7}\Rightarrow AB:AC=\frac{5}{7}\Rightarrow AB=\frac{5}{7}AC\)

Áp dụng công thức: \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{15^2}=\frac{1}{\frac{25}{49}AC^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{225}=\frac{49}{25}.\frac{1}{AC^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{225}=\frac{1}{AC^2}\left(\frac{49}{25}+1\right)\)

\(\Rightarrow\frac{1}{225}=\frac{1}{AC^2}.\frac{74}{25}\Rightarrow\frac{1}{AC^2}=\frac{1}{225}.\frac{25}{74}=\frac{1}{666}\Rightarrow AC^2=666\Rightarrow AC=\sqrt{666}=3\sqrt{74}cm\)

Do đó: \(AB=\frac{5}{7}.3\sqrt{74}=\frac{15\sqrt{74}}{7}cm\)

Suy ra: \(CH=21cm\) và \(BH=\frac{75}{7}cm\) ( Áp đụng định lý Pi - ta go )

b) Chu vi tam giác ABC là: AB + AC + BC = \(\frac{15\sqrt{74}}{7}+3\sqrt{74}+21+\frac{75}{7}\approx76cm\)

Cũng k biết đúng k nữa =.=