CM a/(ab+a+1)^2 +b/(bc+b+1)^2 +c/(ac+c+1)^2 >=1/(a+b+c)
CM a/(ab+a+1)^2 + b/(bc+b+1)^2 +c/(ac+c+1)^2 >= 1/(a+b+c)
Cho a, b, c >0 thỏa mãn: abc=1. CM: \(\dfrac{1}{a^2-ab+b^2}+\dfrac{1}{b^2-bc+c^2}+\dfrac{1}{c^2-ac+a^2}\le a+b+c\)
Ta có : \(a^2+b^2\ge2ab\Rightarrow a^2+b^2-ab\ge ab\)
\(\Rightarrow\dfrac{1}{a^2-ab+b^2}\le\dfrac{1}{ab}=\dfrac{abc}{ab}=c\) ( do $abc=1$ )
Tương tự ta có :
\(\dfrac{1}{b^2-bc+c^2}\le a\)
\(\dfrac{1}{c^2-ab+a^2}\le b\)
Cộng vế với vế các BĐT trên có :
\(\dfrac{1}{a^2-ab+b^2}+\dfrac{1}{b^2-bc+c^2}+\dfrac{1}{c^2-ac+a^2}\le a+b+c\)
Dấu "=" xảy ra khi $a=b=c$
\(VT=\dfrac{1}{a^2+b^2-ab}+\dfrac{1}{b^2+c^2-bc}+\dfrac{1}{c^2+a^2-ca}\)
\(VT\le\dfrac{1}{2ab-ab}+\dfrac{1}{2bc-bc}+\dfrac{1}{2ca-ca}=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=\dfrac{a+b+c}{abc}=a+b+c\)
Dấu "=" xảy ra khi \(a=b=c=1\)
cho a,b,c duong , a+b+c=1
a, tim Min A=1/(a^2+b^2) +1/(b^2+c^2) +1/(c^2+a^2) +1/ab +1/bc +1/ac
b, tìm Min B=1/(a^2+bc) +1/(b^2+ac) +1/(c^2+ab) +1/ab +1/bc +1/ac
\(a\text{) }\)Áp dụng: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) (a, b > 0). Dấu "=" xảy ra khi a = b.
\(\frac{1}{a^2+b^2}+\frac{1}{ab}=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{2.\frac{\left(a+b\right)^2}{4}}=\frac{6}{\left(a+b\right)^2}\)
\(=6\left[\frac{1}{\left(a+b\right)^2}+\frac{27}{8}\left(a+b\right)+\frac{27}{8}\left(a+b\right)\right]-\frac{81}{2}\left(a+b\right)\)
\(\ge6.3\sqrt[3]{\frac{1}{\left(a+b\right)^2}.\frac{27}{8}\left(a+b\right).\frac{27}{8}\left(a+b\right)}-\frac{81}{2}\left(a+b\right)\)
\(=\frac{81}{2}-\frac{81}{2}\left(a+b\right)\)
Tương tự: \(\frac{1}{b^2+c^2}+\frac{1}{bc}\ge\frac{81}{2}-\frac{81}{2}\left(b+c\right)\)
\(\frac{1}{c^2+a^2}+\frac{1}{ca}\ge\frac{81}{2}-\frac{81}{2}\left(c+a\right)\)
Cộng theo vế ta được
\(A\ge3.\frac{81}{2}-81\left(a+b+c\right)=3.\frac{81}{2}-81=\frac{81}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}.\)
Vậy GTNN của A là \(\frac{81}{2}.\)
a^2+b^2+c^2=1 cm ab/(c^2+1)+ac/(b^2+1)+bc/(a^2+1)<=3/4
Cho a,b,c nguyên dương
Cm
(a+b)/(bc+a^2) + (b+c)/(ac+b^2) +(a+c)/(ab+c^2) >= 1/a + 1/b + 1/c
Cho a,b,c thỏa mãn a^2 + b^2 + c^2 =1 Cm: abc+2(1+a+b+c+ab+ac+bc) lớn hơn bằng 0
Vi a^2+b^2+c^2=1
=>-1=<a,b,c=<1
=>(1+a)(1+b)(1+c)>=0
=>1+abc+ab+bc+ca+a+b+c>=0 (1*)
Lại có (a+b+c+1)^2/2>=0
=>[a^2+b^2+c^2+1+2a+2b+2c+2ab+2bc+2ca
]/2>=0
=>[2+2a+2b+2c+2ab+2bc+2ca]/2>=0 (Thay a^2+b^2+c^2=1)
=>1+a+b+c+ab+bc+ca>=0 (2*)
tu (1*)(2*) ta co abc+2(1+a+b+c+ab+bc+ca)>=0
dau = xay ra <=>a+b+c=-1 va a^2+b^2+c^2=1
<=>a=0,b=0,c=-1 va cac hoan vi cua no
Vì a^2+b^2+c^2=1
=>-1=<a,b,c=<1
=>(1+a)(1+b)(1+c)>=0
=>1+abc+ab+bc+ca+a+b+c>=0 (1*)
Lại có (a+b+c+1)^2/2>=0
=>[a^2+b^2+c^2+1+2a+2b+2c+2ab+2bc+2ca
]/2>=0
=>[2+2a+2b+2c+2ab+2bc+2ca]/2>=0 (Thay a^2+b^2+c^2=1)
=>1+a+b+c+ab+bc+ca>=0 (2*)
tu (1*)(2*) ta co abc+2(1+a+b+c+ab+bc+ca)>=0
dau = xay ra <=>a+b+c=-1 va a^2+b^2+c^2=1
<=>a=0,b=0,c=-1 và các hoan vi của nó
Vì a^2+b^2+c^2=1
=>-1=<a,b,c=<1
=>(1+a)(1+b)(1+c)>=0
=>1+abc+ab+bc+ca+a+b+c>=0 (1*)
Lại có (a+b+c+1)^2/2>=0
=>[a^2+b^2+c^2+1+2a+2b+2c+2ab+2bc+2ca
]/2>=0
=>[2+2a+2b+2c+2ab+2bc+2ca]/2>=0 (Thay a^2+b^2+c^2=1)
=>1+a+b+c+ab+bc+ca>=0 (2*)
tu (1*)(2*) ta co abc+2(1+a+b+c+ab+bc+ca)>=0
dau = xay ra <=>a+b+c=-1 va a^2+b^2+c^2=1
<=>a=0,b=0,c=-1 và các hoan vi của nó
cho a,b,c thỏa mãn điều kiện a^2+b^2+c^2=1.cm abc+2(1+a+b+c+ab+ac+bc)>=0
Do: \(a^2+b^2+c^2=1\text{ nen }a^2\le1,b^2\le1,c^2\le1\)
\(\Rightarrow a\ge-1;b\ge-1;c\ge-1\)
\(\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge0\)
\(\Rightarrow1+a+b+c+ab+bc+ca+abc\ge0\)
Cần C/m:
\(1+a+b+c+ab+bc+ca\ge0\)
Ta có:
\(1+a+b+c+ab+bc+ca\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+ab+bc+ca+a+b+c\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2+2\left(a+b+c\right)+2ab+2bc+2ca+abc\ge0\)
\(\Leftrightarrow\left(a+b+c\right)^2+2\left(a+b+c\right)+1\ge0\)
\(\Leftrightarrow\left(a+b+c+1\right)^2\ge0\left(\text{luon dung}\right)\)
=> ĐPCM
Bấm vào câu hỏi tương tự
hoặc lên Học24h
Cho abc=1.Cm a/(ab+a+1)^2+b/(bc+b+1)+c/(ac+c+1)>=1/(a+b+c).Đẳng thức xảy ra khi nào
tính tổng sau:
1/(b-c)(a^2+ac-b^2-bc)+1/(c-a)(b^2+ab-c^2-ac)+1/(a-b)(c^2+bc-a^2-ab)
\(\frac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}+\frac{1}{\left(c-a\right)\left(b^2+ab-c^2-ac\right)}+\frac{1}{\left(a-b\right)\left(c^2+bc-a^2-ab\right)}\)
\(=\frac{c-a}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}+\frac{a-b}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}\)
\(+\frac{b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}\)
\(=0\)