Cho tam giác ABC cân tại A, góc A = 100 độ. CD là tia phân giác của C ( D thuộc AB ). Chứng minh rằng : AD + CD = BC
Cho tam giác ABC cân tại A. Lấy điểm D thuộc cạnh AB, E thuộc cạnh AC sao cho AD = AE.
a) Chứng minh BE = CD.
b) Gọi K là giao điểm của BE và CD. Chứng minh tam giác KBC cân.
c) Chứng minh AK là tia phân giác góc A.
d) Kéo dài AK cắt BC tại H. Cho AB =5 cm, BC = 6 cm. Tính độ dài AH.
cho tam giác abc cân tại a. trên tia đối của tia ab lấy điểm d sao cho AD=AB và tia phân giác AE của CAD ( E thuộc CD )a, Chứng minh : ΔADE= ΔACEb,Chứng minh rằng : AE vuông góc CD
#\(N\)
`a,` Tam giác `ABC` cân tại `A -> AB = AC,`\(\widehat{B}=\widehat{C}\)
Mà `AB = AD -> AD = AC`
Xét Tam giác `ADE` và Tam giác `ACE` có:
`AD = AC`
\(\widehat{DAE}=\widehat{CAE}\) `(` tia phân giác \(\widehat{CAD}\) `)`
`AE` chung
`=>` Tam giác `ADE =` Tam giác `ACE (c-g-c)`
`b,` Vì Tam giác `ADE =` Tam giác `ACE (a)`
`->` \(\widehat{AED}=\widehat{AEC}\) `( 2` góc tương ứng `)`
Mà `2` góc này ở vị trí kề bù
`->` \(\widehat{AED}+\widehat{AEC}=180^0\)
`->`\(\widehat{AED}=\widehat{AEC}=\) `180/2 = 90^0`
`-> AE \bot CD`
Bài 1: Tứ giác ABCD, góc A =góc C=90 độ. Da cắt CB tại E, AB cắt CD tại F. Chứng minh rằng:
a) Góc E= góc F
b) Tia phân giác của góc E cắt AB tại G, cắt CD tại H. Tia phân giác của góc F cắt BC tại I,cắt AD tại K.
CMR: GKHI là hình thoi
Bài 2: Tam giác ABC đều. M thuộc BC, ME vuông góc với AB (E thuộc AB). ME vuông góc với AC (F thuộc AC). I thuộc AM: IA=IM. D thuộc BC: DB=DC. Chứng minh rằng:
a) Góc DIE, góc DIF=?
b) DEIF là hình thoi
Bài 3: Tam giác ABC, D thuộc AB, E thuộc AC: BD=CE. M thuộc DE: MD=ME. N thuộc BC: NB=NC. I thuộc BE: IB=IE. K thuộc CD: KC=KD. Chứng minh rằng:
a) MINK là hình?
b) IK cắt AB tại G, IK cắt AC tại H
CMR: Tam giác AGH cân
cho tam giác abc cân tại a. trên tia đối của tia ab lấy điểm d sao cho AD=AB và tia phân giác AE của CAD ( E thuộc CD ) a, vẽ tia phân giác AK của BAC ( K thuộc BC ). Chứng minh AK//CD b,Tính góc BCD
a: ΔABC cân tại A
mà AK là phân giác
nen K là trung điểm của BC
Xét ΔCBD có
A,K lần lượt là trung điểm của BD,BC
=>AK là đường trung bình
=>AK//CD
b: Xét ΔCBD có
CA là trung tuyến
CA=BD/2
=>ΔBDC vuông tại C
=>góc BCD=90 độ
a: ΔABC cân tại A
mà AK là phân giác
nen K là trung điểm của BC
Xét ΔCBD có
A,K lần lượt là trung điểm của BD,BC
=>AK là đường trung bình
=>AK//CD
b: Xét ΔCBD có
CA là trung tuyến
CA=BD/2
=>ΔBDC vuông tại C
=>góc BCD=90 độ
Cho tam giác ABC cân tại A có góc B = góc C bằng 40 độ. Kẻ phân giác BD ( D thuộc AC). Trên tia AB lấy điểm M sao cho AM = BC. Từ D dựng đường thẳng song song với BC cắt AB tại E.
a) Chứng minh DE = CD
b) Chứng minh BD + AD = BC
c) tính góc AMC
Cho tam giác ABC cân tại A , tia phân giác của góc A cắt BC tại D .
a) Chứng minh BD =CD
b) Chứng minh AD vuông góc với BC
c) Biết AD và BD tỉ lệ với 4 và 3, AB =10 cm . Tính độ dài AD ?
a: Ta có: ΔABC cân tại A
mà AD là đường phân giác
nên D là trung điểm của BC
hay BD=CD
b: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là đường cao
c: Đặt AD/4=BD/3=k
=>AD=4k; BD=3k
Xét ΔADB vuông tại D có \(AB^2=AD^2+BD^2\)
\(\Leftrightarrow25k^2=100\)
=>k=2
=>AD=8(cm)
a) Xét tam giác ABC cân tại A:
AD là phân giác góc A (gt).
=> AD là trung tuyến (T/c tam giác cân).
=> D là trung điểm của BC.
=> BD = CD.
b) Xét tam giác ABC cân tại A:
AD là phân giác góc A (gt).
=> AD là đường cao (T/c tam giác cân).
=> AD vuông góc với BC.
c) Ta có: \(\dfrac{AD}{BD}=\dfrac{4}{3}.\Rightarrow BD=\dfrac{3}{4}AD.\)
Xét \(\Delta ADB\) vuông tại D:
\(AB^2=AD^2+BD^2\left(Pytago\right).\\ \Rightarrow AB^2=AD^2+\left(\dfrac{3}{4}AD\right)^2.\\ \Leftrightarrow AB^2=AD^2+\dfrac{9}{16}AD^2=\dfrac{25}{16}AD^2.\\ \Rightarrow10^2=\dfrac{25}{16}AD^2.\\ \Rightarrow AD^2=64.\\ \Rightarrow AD=8\left(cm\right).\)
bài 9 cho tam giác ABC cân tại A . Điểm D thuộc AB ; điểm E thuộc AC sao cho AD = AE . Gọi F là giao điểm của BE và CD . Chứng minh rằng :a)BE= CD VÀ góc ABE = góc ACD b) tam giác FBC là tâm giác cân .c) tam giác FBD=tam giác FCE. d) AF là tia phân giác của góc A . e) kéo dài AF cắt BC tại M.Tam giác AMC là tam giác gì ? vì sao?
Cho tam giác ABC cân tại A. Điểm D thuộc AB,điểm E thuộc AC sao cho AD=AE. Gọi F là giao điểm của BE và CD. Chứng minh rằng:
a.BE=CD và góc ABE= góc ACD.
b.Tam giác FBC là tam giác cân.
c.Tam giác FBD = tam giác FCE.
d. AF là tia phân giác của góc A.
999 - 888 - 111 + 111 - 111 + 111 - 111
= 111 - 111 + 111 -111 + 111 - 111
= 0 + 111 - 111 + 111 - 111
= 111 - 111 + 111 - 111
= 0 + 111 - 111
= 111 - 111
= 0
Đáp số: 0
a) ta có AB=AC. BD=CE => AD=AE => tam giác ADE cân tại A => góc ADE= \(\frac{180-A}{2}\)
tam giác ABC CÂN TẠI A => GÓC B=$ \(\frac{180-A}{2}\)
=> GÓC D =GÓC B. MÀ 2 GÓC VỊ TRÍ ĐỒNG VỊ => DE//BC
B) TAM GIÁC ABE VÀ TAM GIÁC ACD
AB=AC
GÓC A CHUNG
BE=CD
=> 2 TAM GIÁC = NHAU (C.G.C)
C) tam giác ABE = tam giác ACD => GÓC ABE= GÓC ACD
C/M TAM GIÁC DBC VÀ TAM GIÁC EBC (C.G.C)
=> GÓC BCD=GÓC ECB => TAM GIÁC IBC CÂN => IB=IC
XÉT tam giác BID VÀ tam giác CIE:
GÓC BID=CIE(ĐỐI ĐỈNH)
IB=IC
GÓC DBE=ECD
=> 2 TAM GIÁC = NHAU (G.C.G)
D) XÉT TAM GIÁC IAB VÀ TAM GIÁC IAC
AB=AC
GÓC ABE=ACD
IB=IC
=> 2 TAM GIÁC = NHAU (C.G.C)
=> GÓC BAI=GÓC CAI
=> AI LÀ PHÂN GIÁC GÓC BAC
e) MÀ TAM GIÁC ABC CÂN => AI ĐỒNG THỜI LÀ ĐƯỜNG CAO => AI VUÔNG GÓC BC