a: ΔABC cân tại A
mà AK là phân giác
nen K là trung điểm của BC
Xét ΔCBD có
A,K lần lượt là trung điểm của BD,BC
=>AK là đường trung bình
=>AK//CD
b: Xét ΔCBD có
CA là trung tuyến
CA=BD/2
=>ΔBDC vuông tại C
=>góc BCD=90 độ
a: ΔABC cân tại A
mà AK là phân giác
nen K là trung điểm của BC
Xét ΔCBD có
A,K lần lượt là trung điểm của BD,BC
=>AK là đường trung bình
=>AK//CD
b: Xét ΔCBD có
CA là trung tuyến
CA=BD/2
=>ΔBDC vuông tại C
=>góc BCD=90 độ
cho tam giác abc cân tại a. trên tia đối của tia ab lấy điểm d sao cho AD=AB và tia phân giác AE của CAD ( E thuộc CD ) a, vẽ tia phân giác AK của BAC ( K thuộc BC ). Chứng minh AK//CD b,Tính góc BCD
cho tam giác abc cân tại a. trên tia đối của tia ab lấy điểm d sao cho AD=AB và tia phân giác AE của CAD ( E thuộc CD )
a, vẽ tia phân giác AK của BAC ( K thuộc BC ). Chứng minh AK//CD
b,Tính góc BCD
cho tam giác abc cân tại a. trên tia đối của tia ab lấy điểm d sao cho AD=AB và tia phân giác AE của CAD ( E thuộc CD )
a, vẽ tia phân giác AK của BAC ( K thuộc BC ). Chứng minh AK//CD
b,Tính góc BCD
cho tam giác abc cân tại a. trên tia đối của tia ab lấy điểm d sao cho AD=AB và tia phân giác AE của CAD ( E thuộc CD )a, Chứng minh : ΔADE= ΔACEb,Chứng minh rằng : AE vuông góc CD
Cho tam giác ABC cân tại A. Lấy điểm D thuộc cạnh AB, E thuộc cạnh AC sao cho AD = AE.
a) Chứng minh BE = CD.
b) Gọi K là giao điểm của BE và CD. Chứng minh tam giác KBC cân.
c) Chứng minh AK là tia phân giác góc A.
d) Kéo dài AK cắt BC tại H. Cho AB =5 cm, BC = 6 cm. Tính độ dài AH.
cho tam giác abc cân tại a. Lấy d thuộc cạnh ab và e thuộc cạnh ac sao cho ad=ae. Gọi k là giao điểm của be và CD. Chứng minh
a) c/m: be=cd
b) c/m: tam giác BKC là tam giác cân
c) c/m: ak là tia phân giác của góc bac
Cho tam giác ABC vuông tại A. Trên tia đối tia AB lấy điểm D sao cho AD=AB
a. Chứng minh tam giác ABC= tam giác ADC
b. Kẻ tia phân giác BK của góc ABC( k thuộc AC ). Vẽ KI vuông góc BC (I thuộc BC). Chứng minh KI=KA và AK < KC
c. Chứng minh DK là tia phân giác của góc BDC
Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )
a,chứng minh rằng IA=IB
b, Tính độ dài IC
c, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IK
Bài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE
a, chứng minh rằng BE=CD
b, chứng minh rằng góc ABE bằng góc ACD
c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?
Bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E kẻ CK vuông góc với AB (K thuộc AB) kẻ BD vuông góc với tia AE (D thuộc tia AE)chứng minh:
a, AC=AK và AE vuông góc CK
b,KB=KA
c, EB > AC
d, ba đường AC,BD,KE cùng đi qua 1 điểm
Bài 4: Cho tam giác nhọn ABC vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE .Gọi M là giao điểm của DC và BE Chứng minh rằng:
a, tam giác ABE=tam giác ADC
b,góc BMC=120°
Bài 5: Cho tam giác ABC vuông ở C ,có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E,kẻ EK vuông góc với AB( K thuộc AB)kẻ BD vuông góc với AE (D thuộc AE) chứng minh
a,AK=KB
b, AD=BC
Cho tam giác ABC,lấy điểm D thuộc tia đối của tia AB,điểm E thuộc tia đối của tia AC sao cho AD=AB và AE=AC. Kẻ AH vuông góc với BC tại H kẻ AK vuông góc với DE tại K. Chứng minh
a, tam giác ABC =tam giác ADE
b,BH=DK
c,ba điểm A,H,K thẳng hàng
Đề khó quá nhờ mọi người giải với nha