CMR: \(\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^2}+...+\frac{2016}{2^{2016}}<2\)
CMR:\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2^{2016}}< 2016\)
CMR:\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2^{2016}}< 2016\)
\(A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2^{2006}}\)
\(\Rightarrow A< 1+1+1+...+1\)
\(\Rightarrow A< 2016\)
cmr:
S= \(\frac{1}{5^1}+\frac{2}{5^2}+...+\frac{2016}{5^{2016}}< \frac{1}{3}\)
Cho \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017};B=\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{1}{2016}\).CMR B/A là số nguyên
Ta có :
\(B=\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{1}{2016}\)
\(B=\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{1}{2016}+1\right)+1\)
\(B=\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2016}+\frac{2017}{2017}\)
\(B=2017.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}\right)\)
\(\Rightarrow\frac{B}{A}=\frac{2017.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}}=2017\)
Vậy \(\frac{B}{A}\)là số nguyên
Với B =1-\(\frac{1}{2^2}\)-\(\frac{1}{3^2}\)-....................-\(\frac{1}{2016^2}\)>\(\frac{1}{2016}\)CMR B >\(\frac{1}{2016}\)
ngai viet qua , biet lam nhung ko viet dau
\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2^{2016}-2}+\frac{1}{2^{2016}-1}>1008\)
\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2^{2016}-2}+\frac{1}{2^{2016}-1}>1008\)
Cho \(\frac{x^2}{a^2}\)+ \(\frac{y^2}{b^2}\)+ \(\frac{z^2}{c^2}\)=\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
CMR: \(\frac{x^{2016}}{a^{2016}}\)+ \(\frac{y^{2016}}{b^{2016}}\)+ \(\frac{z^{2016}}{c^{2016}}\)= \(\frac{x^{2016}+y^{2016}+z^{2016}}{a^{2016}+b^{2016}+c^{2016}}\)
Ta có
\(1\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
\(1\Leftrightarrow x^2+\frac{\left(b^2+c^2\right)x^2}{a^2}+y^2+\frac{\left(a^2+c^2\right)y^2}{b^2}+z^2+\frac{\left(a^2+b^2\right)z^2}{c^2}=x^2+y^2+z^2\)
\(\Leftrightarrow\frac{\left(b^2+c^2\right)x^2}{a^2}+\frac{\left(c^2+a^2\right)y^2}{b^2}+\frac{\left(a^2+b^2\right)z^2}{c^2}=0\)
Ta thấy rằng cả 3 phân số đó đều \(\ge0\)nên tổng 3 phân số sẽ \(\ge0\)
Dấu = xảy ra khi x = y = z = 0
Với x = y = z = 0 thì
\(\frac{x^{2016}}{a^{2016}}+\frac{y^{2016}}{b^{2016}}+\frac{z^{2016}}{c^{2016}}=\frac{x^{2016}+y^{2016}+z^{2016}}{a^{2016}+b^{2016}+c^{2016}}\Leftrightarrow\frac{0}{a^{2016}}+\frac{0}{b^{2016}}+\frac{0}{c^{2016}}=\frac{0+0+0}{a^{2016}+b^{2016}+c^{2016}}\)
\(\Leftrightarrow0=0\)(đúng)
\(\Rightarrow\)ĐPCM
\(M=1+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\)
CMR: M<2
Gợi ý: tính 2M rồi sai đó lấy 2M - M = M = .... (kết quả gọn hơn)
Làm thế là giải được thôi
Đặt 2M = ( 2+ 1/2+1/2^2+...+1/2^2015)
2M-M=M = (2+1/2+1/2^2+...+1/2^2015)-(1+1/2^2+1/2^3+...+1/2^2016)= 3/2- 1/ 2^2016 < 2 ( Đpcm)
Cho \(E=\frac{1}{3}+\frac{2}{3^2}-\frac{3}{3^3}+\frac{4}{3^4}-...+\frac{2016}{3^{2016}}-\frac{2017}{3^{2017}}\)
CMR : \(E< \frac{3}{16}\)