số dư của \(1963^{1964}\) cho 7 là bao nhiêu
Số dư khi chia 19631964 cho 7 là bao nhiêu?
số dư khi chia \(1963^{1964}\) cho 7 là bao nhiêu ?
1963 chia 7 dư 3
\(\Rightarrow\)19631964 chia 7 dư 31964
Ma 31964 = 9982
9 chia 7 dư 2\(\Rightarrow\)9982 chia 7 dư 2982
Mà 2982=2.8327
8 chia 7 dư 1 \(\Rightarrow\) 8327 chia cho 7 dư 1327=1
\(\Rightarrow\) 2.8327 chia cho 7 dư 2
\(\Rightarrow\) 19631964 chia cho 7 dư 2
Số dư khi chia 19631964 cho 7 bằng bao nhiêu ?
tìm số dư khi chia 19631964 cho 7
tìm số dư phép chia ; 19631964 cho 7
Số dư khi chia \(1963^{1964}\) cho 7 là.......
Có lời giải thì càng tốt nha.
Thanks
1963^1964 chia 7 dư bn
mấy nhok kia ai trả lời dc câu này anh k 3 cái
1963 chia 7 dư 3 --> 1963^1964 chia 7 dư 3^1964
mà 3^1964 = (3^6)^327 . 3^2
+ 3^6 chia 7 dư 1 --> (3^60)^327 chia 7 dư 1
+ 3^2 chia 7 dư 2
=> 1963^1964 chia 7 dư 2
Cái này thuộc dạng Đồng dư nha bạn
tìm số dư trong phép chia sau
a,2222^55555+5555^2222/10 va /7
b,1961^1962+1963^1964+1965^1966+2/7
giải bằng số đồng dư
chứng minh rằng:
1961^1962+1963^1964+1965^1966+2 chia hết cho 7
làm giúp mìh theo cách đồng dư nka!:)
Ta có 1961 ≡ 1(mod 7) nên 1961^1962 ≡ 1 (mod 7)
có 1963 ≡ 3 (mod 7) nên 1963^1964 ≡ 3^1964 = (3^6)^327.3^2 = 9.(3^6)^327 ≡ 9 (mod 7)
vì 3^6 ≡ 1(mod 7) nên (3^6)^327 ≡ 1(mod 7)
Ta cũng có 1995 ≡ 5(mod 7) nên 1995^1996 ≡ 5^1996 = (5^6)^332.5^4 ≡ 2.1 = 2(mod 7)
do 5^6 ≡ 1(mod 7) và 5^4 ≡ 2 (mod7)
Cộng lại ta có S ≡ 14 ≡ 0 (mod 7)
Hay ta có đpcm
Ta có 1961 ≡ 1(mod 7) nên 1961^1962 ≡ 1 (mod 7)
có 1963 ≡ 3 (mod 7) nên 1963^1964 ≡ 3^1964 = (3^6)^327.3^2 = 9.(3^6)^327 ≡ 9 (mod 7)
vì 3^6 ≡ 1(mod 7) nên (3^6)^327 ≡ 1(mod 7)
Ta cũng có 1995 ≡ 5(mod 7) nên 1995^1996 ≡ 5^1996 = (5^6)^332.5^4 ≡ 2.1 = 2(mod 7)
do 5^6 ≡ 1(mod 7) và 5^4 ≡ 2 (mod7)
Cộng lại ta có S ≡ 14 ≡ 0 (mod 7)
Hay ta có đpcm