Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phu Dang
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 12 2021 lúc 15:41

\(\left(x+y\right)^2\le2\left(x^2+y^2\right)=16\)

\(\Rightarrow x+y\ge-4\)

\(S_{min}=-4\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 7 2019 lúc 3:39

Đáp án đúng : C

Etermintrude💫
Xem chi tiết
Huỳnh Nguyên Phú
4 tháng 3 2021 lúc 6:58

Điểm rơi: \(x=y=\frac{\sqrt{2}}{2}\)

Ta tách biểu thức được như sau: \(A=x+\frac{1}{x}+y+\frac{1}{y}=(x+\frac{1}{2x})+(y+\frac{1}{2y})+\frac{1}{2}(\frac{1}{2x}+\frac{1}{2y})\)

\(\geq 2\sqrt{x.\frac{1}{2x}}+2\sqrt{y.\frac{1}{2y}}+\frac{1}{2}.\frac{4}{x+y}=2\sqrt{2}+\frac{2}{x+y}\)

Áp dụng bất đẳng thức Bunhiacốpxki, ta lại có:

\((x+y)^2\leq 2(x^2+y^2)=2 \Rightarrow x+y\leq \sqrt{2}\)

\(\Rightarrow A\geq 3\sqrt{2}\)

Dấu bằng xảy ra khi \(x=y=\frac{\sqrt{2}}{2}\)

Nguyễn Hảo Hảo
27 tháng 10 2024 lúc 8:55

đây là những món quà mà bn sẽ nhận đc: 1: áo quần 2: tiền 3: đc nhiều người yêu quý 4: may mắn cả 5: luôn vui vẻ trong cuộc sống 6: đc crush thích thầm 7: học giỏi 8: trở nên xinh đẹp phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người,

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 2 2017 lúc 4:23

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 5 2019 lúc 13:24

Đáp án C

Lê Bảo Nghiêm
Xem chi tiết
Cao Thành Danh
11 tháng 1 2021 lúc 22:54

thao nguyen phuong
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 5 2017 lúc 5:32

 và đi đến kết quả y = 1 + x

VUX NA
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 8 2021 lúc 13:46

Do \(x^2+y^2=1\), đặt \(\left\{{}\begin{matrix}x=sina\\y=cosa\end{matrix}\right.\)

\(P=\left(3-sina\right)\left(3-cosa\right)=9-3\left(sina+cosa\right)+sina.cosa\)

Đặt \(sina+cosa=t\Rightarrow t\in\left[-\sqrt{2};\sqrt{2}\right]\)

\(t^2=1+2sina.cosa\Rightarrow sina.cosa=\dfrac{t^2-1}{2}\)

\(P=9-3t+\dfrac{t^2-1}{2}=\dfrac{1}{2}t^2-3t+\dfrac{17}{2}\)

Xét hàm \(f\left(t\right)=\dfrac{1}{2}t^2-3t+\dfrac{17}{2}\) trên \(\left[-\sqrt{2};\sqrt{2}\right]\)

\(f'\left(t\right)=t-3=0\Rightarrow t=3\notin\left[-\sqrt{2};\sqrt{2}\right]\)

\(f\left(-\sqrt{2}\right)=\dfrac{19+6\sqrt{2}}{2}\) ; \(f\left(\sqrt{2}\right)=\dfrac{19-6\sqrt{2}}{2}\) 

\(\Rightarrow P_{min}=f\left(\sqrt{2}\right)=\dfrac{19-6\sqrt{2}}{2}\) khi \(t=\sqrt{2}\)