Tìm GTLN của
A=xyz(x+y)(y+z)(z+x) Biết x+y+z =1
cho x+y+z=1 và x,y,z>0. tìm GTLN của A=xyz(x+y)(y+z)(z+x)
Tìm GTLN của: A = xyz(x + y)(y + z)(z + x)
với x; y; z là các số không âm và x + y + z = 1
Áp dụng bđt Cô si cho 3 số không âm ta được:
1 = x + y + z \(\ge3.\sqrt[3]{xyz}\) (*)
Do đó, 2 = (x + y) + (y + z) + (z + x) \(\ge3.\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\) (**)
Dễ thấy 2 vế của (*) và (**) đều không âm nên nhân từng vế của chúng ta được: 2 \(\ge9.\sqrt[3]{A}\)
\(\Rightarrow A\le\left(\frac{2}{9}\right)^3\)
Dấu "=" xảy ra khi x = y = z = \(\frac{1}{3}\)
Vậy ...
Cho các số thực dương x, y, z thỏa mãn: x+y+z=1. Tìm GTLN của biểu thức: \(B=\sqrt{x^2+xyz}+\sqrt{y^2+xyz}+\sqrt{z^2+xyz}+9\sqrt{xyz}\)
Cho các số thực dương x, y, z thỏa mãn: x+y+z=1. Tìm GTLN của biểu thức: \(B=\sqrt{x^2+xyz}+\sqrt{y^2+xyz}+\sqrt{z^2+xyz}+9\sqrt{xyz}\)
Tìm GTLN của tích xyz biết x, y, z là các số dương; z≥60 và x+y+z=100
Từ giả thiết, x+y=100-z\(\leq\)40
Theo BĐT Cô-si: \(3x.3y.z\le\left(\dfrac{3x+3y+z}{3}\right)^3=\left(\dfrac{2x+2y+100}{3}\right)^3\le\left(\dfrac{2.40+100}{3}\right)^3=216000\Rightarrow xyz\le24000\)
Dấu "=" xảy ra khi x=y=20 và z=60
1. Cho \(x,y,z>0\), \(x+y\le1\) và \(xyz=1\). Tìm GTLN của biểu thức \(P=\dfrac{1}{1+4x^2}+\dfrac{1}{1+4y^2}-\sqrt{z+1}\)
2. Cho \(x,y,z>0\), \(xyz=x+y+z\). Tìm GTNN của biểu thức \(P=xy+yz+zx-\sqrt{1+x^2}-\sqrt{1+y^2}-\sqrt{1+z^2}\) (dùng phương pháp lượng giác hóa)
a) tìm gtln của \(S=xyz\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
biết x,y,z>0 và x+y+z=1
Lời giải:
Ta có:
\(S=xyz(x+y)(y+z)(z+x)=(xz+yz)(xy+xz)(yz+xy)\)
Áp dụng BĐT AM-GM có:
\((xz+yz)(xy+xz)(yz+xy)\leq \left(\frac{xz+yz+xy+xz+yz+xy}{3}\right)^3\)
\(=\left(\frac{2(xy+yz+xz)}{3}\right)^3\)
Theo hệ quả quen thuộc của BĐT AM-GM:
\((x+y+z)^2\geq 3(xy+yz+xz)\Rightarrow xy+yz+xz\leq \frac{1}{3}\)
Do đó:
\(S\leq \left[\frac{2(xy+yz+xz)}{3}\right]^3\leq \left(\frac{2.\frac{1}{3}}{3}\right)^3=\frac{8}{729}\)
Vậy \(S_{\max}=\frac{8}{729}\Leftrightarrow x=y=z=\frac{1}{3}\)
cho xyz=8.Tìm GTLN của P=(x-2)/(x+1)+(y-2)/(y+1)+(z-2)/(z+1)
cho x;y;z>0 và xyz=1 .Tìm GTLN của A=1/x^3+y^3+1 +1/y^3+z^3+1 +1/z^3+x^3+1
\(x^3+y^3+1\ge xy\left(x+y\right)+xyz=xy\left(x+y+z\right)\)
=> \(\frac{1}{x^3+y^3+1}\le\frac{1}{xy\left(x+y+z\right)}\)
Hai cái còn lại tương tự
=> A \(\le\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{xz\left(x+y+z\right)}=\frac{1}{x+y+z}\cdot\frac{x+y+z}{xyz}=1\)
Vậy MAx A = 1 tại x = y = z = 1