Cho hcn EFGH có tâm O, nội tiếp tam giác ABC trong đó E thuộc AB; F thuộc AC; G,H thuộc BC. Gọi M và N lần lượt là trung điểm của BC và đường cao AI. CM: M,O,N thẳng hàng
Cho tam giác ABC có 3 góc nhọn , ABC=75 độ , (ab<ac, ac cố định ) nội tiếp đường tròn tâm o . các đường cao AF và CE của tam giác abc cắt nhau tại h ( f thuộc bc , e thuộc ab )
a cm tứ giác BEHF nội tiếp
b kẻ đường kính ak của đường tròn o .chứng minh ; hai tam giác abk và afc đồng dạng
c khi b di chuyển trên cung lớn ac thì điểm H di chuyển trên đường nào
giúp mình câu c ạ !!!
Cho tam giác ABC có 3 góc nhọn , ABC=75 độ , (ab<ac, ac cố định ) nội tiếp đường tròn tâm o . các đường cao AF và CE của tam giác abc cắt nhau tại h ( f thuộc bc , e thuộc ab )
a cm tứ giác BEHF nội tiếp
b kẻ đường kính ak của đường tròn o .chứng minh ; hai tam giác abk và afc đồng dạng
c khi b di chuyển trên cung lớn ac thì điểm H di chuyển trên đường nào
giúp mình câu c với ạ !!!
a: góc BEH+góc BFH=90 độ
=>BEHF nội tiếp
b: góc ABK=1/2*sđ cung AK=90 độ
Xét ΔABK vuông tại B và ΔAFC vuông tại F có
góc AKB=góc ACF
=>ΔABK đồng dạng với ΔAFC
cho tam giác ABC có 3 góc nhọn nội tiếp đg tròn tâm O kẻ các đg cao AF, CG của tam giác ABC (G thuộc AB, F thuộc BC) đg kính AD của đg tròn tâm O cắt BC tại E
1, chứng minh tứ giác AGFC nội tiếp 1 đg tròn
2, chứng minh EA.ED=EB.EC
3, gọi K và I lần lượt là hình chiếu vuông góc của F trên các cạnh CG và AC đg thẳng IK cắt cạnh AB tại H chứng minh HF\(\perp\)AB
Cho tứ giác ABCD nội tiếp đường tròn O. Gọi E,F,G,H lần lượt là tâm đường tròn nội tiếp của các tam giác ABC, BCD, CDA, DAB. CMR: EFGH là hình chữ nhật.
Cho tam giác ABC ( AB<AC) có 3 góc nhọn nội tiếp đường tròn tâm O, các đường cao BE, CF giao nhau tại K ( E thuộc AC, F thuộc AB)
a) CM: tứ giác AEKF nội tiếp
b) CM tam giác AEF đồng dạng tam giác ABC
c) Gọi N là trung điểm của BC , CM AK = 2ON
ukm
để mik vẽ hình ra cái
câu c hay 0,5 điểm nhỉ
Cho tam giác nhọn ABC nội tiếp trong đường tròn tâm O. Các đường cao BD và CE của tam giác cắt nhau tại H (D thuộc AC. E thuộc AB) 1. CM các tứ giác ADHE và BCDE nội tiếp được trong một đường tròn 2. Tia BD và tia CE lần lượt cắt đường tròn O tại M và N. Cm DE song song MN 3. Kẻ đường kính AK. Cm tứ giác BKCM là hình thang cân
Câu 1 : Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O. Các đường cao BD và CE của tam giác (D thuộc AC, E thuộc AB) cắt nhau tại H. Chứng minh:
1)Tứ giác BCDE nội tiếp được đường tròn, từ đó suy ra góc BCD = góc AED
2) Kẻ đường kính AK. Chứng minh: AB . BC = AK . BD
3) Từ điểm O kẻ OM vuông góc với BC (M thuộc BC). Chứng minh: H, M, K thẳng hàng
Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O. Các đường cao BD và CE của tam giác (D thuộc AC, E thuộc AB) cắt nhau tại H. Chứng minh:
1)Tứ giác BCDE nội tiếp được đường tròn, từ đó suy ra góc BCD = góc AED
2) Kẻ đường kính AK. Chứng minh: AB . BC = AK . BD
3) Từ điểm O kẻ OM vuông góc với BC (M thuộc BC). Chứng minh: H, M, K thẳng hàng.
Câu 1 : Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O. Các đường cao BD và CE của tam giác (D thuộc AC, E thuộc AB) cắt nhau tại H. Chứng minh:
1)Tứ giác BCDE nội tiếp được đường tròn, từ đó suy ra góc BCD = góc AED
2) Kẻ đường kính AK. Chứng minh: AB . BC = AK . BD
3) Từ điểm O kẻ OM vuông góc với BC (M thuộc BC). Chứng minh: H, M, K thẳng hàng