Cho tam giác ABC,đường cao AI.Dựng hình chữ nhật EFGH nội tiếp tam giác ABC. Gọi M,N lần lượt là TĐ BC, AI. O là giao của EG và FH. CM: M,O,N thẳng hàng
cho tam giác nhọn ABC. Đường tròn tâm O đường kính BC cắt các cạnh AB,AC lần lượt tại các điểm M,N . Gọi H là gia điểm BN, CM; P là giao điểm AH và BC
1. Chứng minh tứ giác AMHN nội tiếp đường tròn
2. Chứng minh BM.BA=BP.BC
3. Trong trường hợp đặc biệt khi tam giác ABC đều cạnh bằng 2a. Tính chu vi đường tròn ngoại tiếp tứ giác AMHN theo a
4. Từ A kẻ các tiếp tuyển AE và AF của đường tròn tâm O đường kính BC ( E,F là các tiếp điểm). Chứng minh ba điểm E,H,F thằng hàng
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn C tâm O bán kính R. Hai đường cao AE và BK của tam giác ABC cắt nhau tại H ( với E thuộc BC, K thuộc AC)
1. Chứng minh tg AEBK nội tiếp đường tròn
2. Chứng minh CE.CB=CK.CA
3. Chứng minh góc OCA = góc BAE
Cho hình bình hành ABCD có các đường cao AE, AF.( E thuộc DC, F thuộc BC) Gọi M,N lần lượt là trung điểm của EF, AF. Đường thẳng đi qua A vuông góc với EF cắt CM tại H. Đường trung trực của EF cắt AC tại O. Gọi K là giao điểm của HN và AB. CMR 3 điểm K,O,E thẳng hàng.
Cho hình bình hành ABCD có các đường cao AE, AF.( E thuộc DC, F thuộc BC) Gọi M,N lần lượt là trung điểm của EF, AF. Đường thẳng đi qua A vuông góc với EF cắt CM tại H. Đường trung trực của EF cắt AC tại O. Gọi K là giao điểm của HN và AB. CMR 3 điểm K,O,E thẳng hàng.
Cho tam giác ABC có AB < AC. Lấy M thuộc AB, N thuộc AC sao cho BM = CN. Gọi I, K lần lượt là trung điểm của MN và BC. Đường thẳng IK cắt AB, AC tại E, F. CM: Tam giác AEF cân.
Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.
Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.
Bài 6. Cho tứ giác ABCD có hai đường chéo cắt nhau tại I thỏa mãn tam giác AID đòng dạng tam giác BIC. Kẻ IH ⊥ AD, IK ⊥ BC. M, N lần lượt là trung điểm AB, CD. Chứng minh rằng MN ⊥ HK.
Bài 7. Cho tứ giác ABCD có hai đường chéo cắt nhau tại O. Gọi M, N lần lượt là trung điểm AB, CD; H, K lần lượt là trực tâm các tam giác AOD, BOC. Chứng minh rằng MN ⊥ HK.
Bài 8. Cho tam giác ABC. Các đường cao AD, BE, CF . M thuộc tia DF , N thuộc tia DE sao cho ∠M AN = ∠BAC. Chứng minh rằng A là tâm đường tròn bàng tiếp góc D của tam giác DMN .
Bài 9. Cho tứ giác ABCD có hai đường chéo AC = BD. Về phía ngoài tứ giác dựng các tam giác cân đồng dạng AMB và CND (cân tại M, N ). Gọi P, Q lần lượt là trung điểm của AD, BC. Chứng minh rằng M N vuông góc với PQ.
Bài 10. Cho tam giác ABC. Các đường cao AD, BE, CF . Trên AB, AC lấy các điểm K, L sao cho ∠FDK = ∠EDL = 90◦. Gọi M là trung điểm KL. Chứng minh rằng AM ⊥ EF .
Mong các bạn giúp đỡ mình. Giúp được bài nào thì giúp nhé.
cho tam giác ABC có AC>AB lấy M thuộc AB , N thuộc AC sao cho BM=CN Gọi E,F,G,H lần lượt là trung điểm của BC,CM,MN,NB.
a) Cmr EFGH là hình thoi
b) Tìm điều kiện của tam giác ABC để EFGH là hình vuông
c) Chứng Minh góc BAC = góc HGF
cho tam giác ABC có AB <AC và đường cao AH .Gọi M,N lần lượt là trung điểm của các cạnh AB,BC,CA
a/cm HC >HC ,từ đó suy ra N nằm giữa H và C
b/gọi MH cắt PN tại I .CM :I cách đều M và P
c/gọi O là giao điểm của MN và HP .kẻ MF song song vs HP (E thuộc AC ) .CM O đối xứng vs F qua MP
Cho tam giác ABC vuông tại A, AH là đường cao ( H thuộc BC). Kẻ HE, HF lần lượt vuông góc với AB và AC (E thuộc AB, F thuộc AC).
a) Chứng minh AH = EF.
b) Gọi O là giao điểm của AH và EF, K là trung điểm của AC. Qua F kẻ đường thẳng vuông góc với EF cắt BC tại I.Chứng minh tứ giác AOIK là hình bình hành.
c) EF cắt IK tại M. Chứng minh tam giác OMI cân