Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn_Thị_Thùy_Linh_082...
Xem chi tiết
Vũ Nam khánh
Xem chi tiết
duc phuc
Xem chi tiết
Lê Thị Thục Hiền
21 tháng 8 2021 lúc 9:43

a. \(x=\left\{4;9;16\right\}\)

b. \(x=1\)

c. \(x=\left\{-2;-1\right\}\)

THI QUYNH HOA BUI
Xem chi tiết
Trần Tuấn Hoàng
25 tháng 3 2022 lúc 20:51

-Đặt \(x^2+8x=a^2\)

\(\Rightarrow x^2+8x+16=a^2+16\)

\(\Rightarrow\left(x+4\right)^2-a^2=16\)

\(\Rightarrow\left(x+a+4\right)\left(x-a+4\right)=16\)

-Vì \(x,a\) là các số nguyên dương \(\Rightarrow x+a+4>x-a+4\) và \(16=16.1=8.2=4.4\)

\(\Rightarrow x+a+4=16;x-a+4=1\Rightarrow x=\dfrac{9}{2};a=\dfrac{15}{2}\left(loại\right)\)

\(x+a+4=8;x-a+4=2\Rightarrow x=1;a=3\left(nhận\right)\)

\(x+a+4=4;x-a+4=4\Rightarrow x=a=0\left(nhận\right)\)

-Vậy \(x\in\left\{0;1\right\}\)

 

 

 

Lê Thế Minh
Xem chi tiết
Pham Quoc Cuong
30 tháng 4 2018 lúc 21:44

Ta có: \(x^2-2x-14=y^2\) (y nguyên) 

\(\Leftrightarrow\left(x-1\right)^2-15=y^2\)

\(\Leftrightarrow\left(x-1\right)^2-y^2=15\)

\(\Leftrightarrow\left(x-y-1\right)\left(x+y-1\right)=15\)

Mà x-y-1< x+y-1 với mọi x,y 

Ta sẽ có các Trường hợp 

....

trinh thi thuy
Xem chi tiết
hà quốc việt
13 tháng 11 2014 lúc 20:37

đăt. x^2 + 2x +1 +1 = n^2 ( n dương)  suy ra n^2 - (x + 1)^2 = 1 hay (n-x-1)(n+x+1) = 1.1

    suy ra  n - x -1 = 1 và n + x + 1 =1  suy ra n = 1; x = -1.liên hệ 0972315132

                 

Cà Bui
Xem chi tiết
Cà Bui
10 tháng 1 2020 lúc 11:22

4x+37 nha mình gõ nhầm

Khách vãng lai đã xóa
TrịnhAnhKiệt
Xem chi tiết
Mai Thanh Hoàng
Xem chi tiết
Ngu Ngu Ngu
18 tháng 4 2017 lúc 10:03

Giải:

Dùng biến đổi tương đương chứng minh được:

\(\left(x^2+x+2\right)^2=x^4+5x^3+4x+4>x^4+2x^3+2x^2+x+3>\) \(x^4+2x^3+x^2=\left(x^2+x\right)^2\)

\(\Rightarrow x^4+2x^3+2x^2+x+3=\left(x^2+x+1\right)^2\)

\(\Leftrightarrow x^4+2x^3+2x^2+x+3=x^4+2x^3+3x^2+2x+1\)

\(\Leftrightarrow x^2+x-2=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

Vậy \(x=1\) hoặc \(x=-2\) thì phương trình trên là số chính phương

Phan Văn Hiếu
18 tháng 4 2017 lúc 12:18

dùng phương pháp hệ số bất định ý bạn gọi đa thức đó là bình phương của đa thức (x^2+ax+b)^2 rồi khai triển là ok