Tìm các số nguyên x để x2 - 2x - 14 là số chính phương?
Tìm số nguyên x để :
a, x.x-2x-14 là số chính phương
b, x.x-4x-25 là số chính phương
c, x.x+12x là số chính phương
Tìm tất cả các số nguyên dương x để x
2 + 8x là số chính phương.
Tìm x để mệnh đề chứa biến sau đúng:
a) “ x là số chính phương và 3 < x < 20
b) “ x là số tự nhiên và x2+2x-3=0 "
c) “ x là số nguyên âm thỏa mãn x2≤4
a. \(x=\left\{4;9;16\right\}\)
b. \(x=1\)
c. \(x=\left\{-2;-1\right\}\)
Bài 1. Tìm tất cả các số nguyên dương x để x2 + 8x là số chính phương.
-Đặt \(x^2+8x=a^2\)
\(\Rightarrow x^2+8x+16=a^2+16\)
\(\Rightarrow\left(x+4\right)^2-a^2=16\)
\(\Rightarrow\left(x+a+4\right)\left(x-a+4\right)=16\)
-Vì \(x,a\) là các số nguyên dương \(\Rightarrow x+a+4>x-a+4\) và \(16=16.1=8.2=4.4\)
\(\Rightarrow x+a+4=16;x-a+4=1\Rightarrow x=\dfrac{9}{2};a=\dfrac{15}{2}\left(loại\right)\)
\(x+a+4=8;x-a+4=2\Rightarrow x=1;a=3\left(nhận\right)\)
\(x+a+4=4;x-a+4=4\Rightarrow x=a=0\left(nhận\right)\)
-Vậy \(x\in\left\{0;1\right\}\)
tìm x nguyên để \(x^2-2x-14\)là số chính phương
Mk đang cần gấp các bạn giải hộ mk nhé
Ta có: \(x^2-2x-14=y^2\) (y nguyên)
\(\Leftrightarrow\left(x-1\right)^2-15=y^2\)
\(\Leftrightarrow\left(x-1\right)^2-y^2=15\)
\(\Leftrightarrow\left(x-y-1\right)\left(x+y-1\right)=15\)
Mà x-y-1< x+y-1 với mọi x,y
Ta sẽ có các Trường hợp
....
Tìm số nguyên x sao cho x2+2x+2 là số chính phương
đăt. x^2 + 2x +1 +1 = n^2 ( n dương) suy ra n^2 - (x + 1)^2 = 1 hay (n-x-1)(n+x+1) = 1.1
suy ra n - x -1 = 1 và n + x + 1 =1 suy ra n = 1; x = -1.liên hệ 0972315132
Tìm tất cả các số nguyên x để x+19; 2x+10; 3x+13; 4x+27 là số chính phương
Tìm tất cả các số nguyên x thỏa mãn x2+x+5 là số chính phương
Tìm các số nguyên x để biểu thức \(x^4+2x^3+2x^2+x+3\) là một số chính phương
Giải:
Dùng biến đổi tương đương chứng minh được:
\(\left(x^2+x+2\right)^2=x^4+5x^3+4x+4>x^4+2x^3+2x^2+x+3>\) \(x^4+2x^3+x^2=\left(x^2+x\right)^2\)
\(\Rightarrow x^4+2x^3+2x^2+x+3=\left(x^2+x+1\right)^2\)
\(\Leftrightarrow x^4+2x^3+2x^2+x+3=x^4+2x^3+3x^2+2x+1\)
\(\Leftrightarrow x^2+x-2=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
Vậy \(x=1\) hoặc \(x=-2\) thì phương trình trên là số chính phương
dùng phương pháp hệ số bất định ý bạn gọi đa thức đó là bình phương của đa thức (x^2+ax+b)^2 rồi khai triển là ok