Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xuân Minh Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 10 2023 lúc 13:56

Sửa đề; NP=10cm

ΔMNP vuông tại M

=>\(MN^2+MP^2=NP^2\)

=>\(MP^2=10^2-6^2=64\)

=>MP=8(cm)

Xét ΔMNP vuông tại M có MH là đường cao

nên \(MH\cdot NP=MN\cdot MP\)

=>MH*10=6*8=48

=>MH=4,8(cm)

Xét ΔMNP vuông tại M có MH là đường cao

nên \(\left\{{}\begin{matrix}MN^2=NH\cdot NP\\PM^2=PH\cdot PN\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}NH=\dfrac{6^2}{10}=3,6\left(cm\right)\\PH=\dfrac{8^2}{10}=6,4\left(cm\right)\end{matrix}\right.\)

nguyen minh khao
Xem chi tiết
Trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 8 2021 lúc 22:07

a: Xét ΔMNP vuông tại M có 

\(\sin\widehat{N}=\dfrac{MP}{PN}=\dfrac{4}{5}\)

\(\cos\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{5}\)

\(\tan\widehat{N}=\dfrac{MP}{MN}=\dfrac{4}{3}\)

\(\cot\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{4}\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:

\(\left\{{}\begin{matrix}MH\cdot NP=MN\cdot MP\\MN^2=HN\cdot NP\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}MH=2.4cm\\NH=1.8cm\end{matrix}\right.\)

Nguyễn Vĩnh Kỳ
15 tháng 3 2022 lúc 14:10

 minh ko bt 

Ly Trần
Xem chi tiết
Đám mây nhỏ
8 tháng 4 2021 lúc 19:49

a) Xét ΔMNP và ΔHMP có:

Góc MPN chung

Góc  NMP = góc MHP (= \(90^o\))

⇒ ΔMNP ~ ΔHMP (g.g)

b) Áp dụng định lí Pytago vào Δ vuông MNP:

\(MP^2=NP^2-MN^2\)

\(MP^2=10^2-6^2\)

\(MP^2=64\)

⇒ MP = 8

Xét ΔMNP có ND là phân giác ⇒ \(\dfrac{MD}{MN}=\dfrac{DP}{NP}\) 

hay \(\dfrac{MD}{6}=\dfrac{DP}{10}\) 

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\dfrac{MD}{6}=\dfrac{DP}{10}=\dfrac{MD+DP}{6+10}=\dfrac{MP}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)

⇒ \(\dfrac{DP}{10}=\dfrac{1}{2}\) ⇒ DP = \(\dfrac{10}{2}\) = 5

Nhàn Nguyễn
Xem chi tiết
Lưu Võ Tâm Như
25 tháng 3 2023 lúc 10:49

M N P H

 

 a)xét \(\Delta HMN\) và \(\Delta MNP \) 

\(\widehat{A}=\widehat{H}=90^o\left(gt\right)\)

\(\widehat{M}\) ( góc Chung)\)

\(\Rightarrow\Delta HMN\sim\Delta MNP\left(g-g\right)\)

 \(\)

b) Theo ddịnh lí Py-ta-go, ta có:

\(NP^2=MN^2+MP^2\\ \Leftrightarrow NP^2=3^2+4^2\\ \Leftrightarrow NP^2=25\\ \Rightarrow NP=5\left(cm\right)\)

 

 

\(\dfrac{HM}{MN}=\dfrac{MP}{NP}\\ \Leftrightarrow\dfrac{HM}{3}=\dfrac{4}{5}\\ \Rightarrow HM=\dfrac{3\cdot4}{5}=2.4\left(cm\right)\)

 

 

) Theo ddịnh lí Py-ta-go, ta có:

\(MN^2=MH^2+NH^2\Rightarrow NH^2=MN^2-MH^2\\ NH^2=3^2-2.4^2=3.24\left(cm\right)\)

 

 

phát nè
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2023 lúc 9:09

ΔMNP vuông tại M

=>\(NP^2=MN^2+MP^2\)

=>\(NP^2=3^2+4^2=25\)

=>\(NP=\sqrt{25}=5\left(cm\right)\)

Xét ΔMNP vuông tại M có MH là đường cao

nên \(MH\cdot NP=MN\cdot MP\)

=>\(MH\cdot5=3\cdot4=12\)

=>MH=12/5=2,4(cm)

Xét ΔPMN vuông tại M có MH là đường cao

nên \(PH\cdot PN=PM^2\)

=>\(PH\cdot5=4^2=16\)

=>PH=16/5=3,2(cm)

Nguyễn Khánh Ngọc
Xem chi tiết
Nguyễn Hữu Thanh
Xem chi tiết
Nguyễn Huy Tú
16 tháng 9 2021 lúc 5:35

Bài 1 : 

Xét tam giác MNP vuông tại M, đường cao MH 

* Áp dụng hệ thức : \(MH^2=NH.HP\Rightarrow NH=\frac{MH^2}{HP}=\frac{36}{9}=4\)cm 

=> NP = HN + HP = 4 + 9 = 13 cm 

* Áp dụng hệ thức : \(MN^2=NH.NP=4.13\Rightarrow MN=2\sqrt{13}\)cm 

* Áp dụng hệ thức : \(MP^2=PH.NP=9.13\Rightarrow MP=3\sqrt{13}\)cm

Khách vãng lai đã xóa
Nguyễn Huy Tú
16 tháng 9 2021 lúc 5:39

Bài 2 : 

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AC^2}+\frac{1}{AB^2}\Rightarrow\frac{1}{9}=\frac{1}{25}+\frac{1}{AB^2}\Rightarrow AB=\frac{15}{4}\)cm 

( bạn nhập biểu thức trên vào máy tính cầm tay rồi shift solve nhé ) 

* Áp dụng hệ thức : \(AC.AB=AH.BC\Rightarrow BC=\frac{\frac{15}{4}.5}{3}=\frac{25}{4}\)cm 

Khách vãng lai đã xóa
kim hanie
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 11 2023 lúc 21:15

Xét ΔMNP vuông tại M có MH là đường caop

nên \(NM^2=NH\cdot NP\)

=>\(NP\cdot7=10^2=100\)

=>\(NP=\dfrac{100}{7}\left(cm\right)\)

ΔMNP vuông tại M

=>\(MN^2+MP^2=NP^2\)

=>\(MP^2=NP^2-MN^2=\left(\dfrac{100}{7}\right)^2-10^2=\dfrac{5100}{49}\)

=>\(MP=\dfrac{10\sqrt{51}}{7}\left(cm\right)\)

\(\widehat{HMP}+\widehat{HMN}=90^0\)

\(\widehat{HMN}+\widehat{N}=90^0\)

=>\(\widehat{HMP}=\widehat{N}\)

Xét ΔMNP vuông tại M có \(sinN=\dfrac{MP}{NP}\)

=>\(sinHMP=\dfrac{10\sqrt{51}}{7}:\dfrac{100}{7}=\dfrac{\sqrt{51}}{10}\)