Cho tam giác ABC có AB=AC .Chứng minh góc B=góc C
b) Xét ΔABD và ΔAED có
AB=AE(gt)
\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAE}\))
AD chung
Do đó: ΔABD=ΔAED(c-g-c)
Suy ra: BD=ED(hai cạnh tương ứng)
Cho tam giác ABC có AB=AC tia phân giác của góc A cắt BC tại D.Chứng minh a:tam giác ADB=tam giác ADC. b: Kẻ DH vuông góc với AB (H€AB),DK vuông góc với AC (K€AC).Chứng minh AH=AK. c: Biết góc A = 3 góc C. Tính số đo các góc của tam giác ABC
Mình làm câu A thôi nha:
Xét tam giác ADB và tam giác ADC
Ta có:AB=AC (gt)
góc A1=A2 (gt)
AD là cạnh chung
=>tam giác ADB=tam giác ADC (cạnh-góc-cạnh)
Xét AHD và AKD lần lượt vuông tại H,K có:
AD: cạnh chung
HAD = KAD ( vì AD là tia phân giác góc A)
Suy ra AHD=AKD(ch-gn)
Do đó AH=AK ( 2 cạnh tương ứng)
bạn ơi vẽ hộ mình cái hình với gt/kl được ko bạn
cảm ơn bạn trước nha
Cho tam giác ABC có AB = AC. AM vuông góc với BC tại M. Chứng minh
a) AM là tia phân giác góc BAC.
b) M là trung điểm của BC.
c) AM là đường trung trực của BC.
d) Góc B = góc C.
Bài 5: Cho tam giác ABC có góc B = góc C. Chứng minh AB = AC
b: Ta có: ΔBAC cân tại A
mà AM là đường cao
nên M là trung điểm của BC
cho tam giác abc có góc a = 60 độ góc c < góc B < 90 độ
a, cm ab<ac
b cm trên cạnh ac lấy điểm m sao cho am = ab .Chứng minh tam giác abm là tam giác đều
c, so sánh các cạnh của tam giác abc
a: góc C<góc B
=>AB<AC
b: Xét ΔABM co AB=AM và góc A=60 độ
nên ΔAMB đều
Cho tam giác ABC có AB bằng AC Gọi D là trung điểm của BC A)chứng minh tam giác ADB bằng tam giác ADC B)Chứng minh AD là phân giác của tam giác ABC C)vẽ DM vuông góc với AB(M thuộc AB) DN vuông góc với AC (N thuộc AC) Chứng minh rằng tam giác ADM bằng tam giác AND và MN//BC
a: Xét ΔADB và ΔADC có
AB=AC
AD chung
BD=CD
Do đó: ΔADB=ΔADC
b: Ta có: ΔABD=ΔACD
=>\(\widehat{BAD}=\widehat{CAD}\)
=>AD là phân giác của góc BAC
c: Xét ΔADM vuông tại M và ΔADN vuông tại N có
AD chung
\(\widehat{DAM}=\widehat{DAN}\)
Do đó: ΔADM=ΔADN
=>AM=AN
Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
nên MN//BC
Cho tam giác ABC có A = 80 độ , B = 50 độ . a, chứng minh tam giác ABC cân . b, kẻ BD vuông góc AC ( D thuộc AC ) , CE vuông góc AB ( E thuộc AB ) . Chứng minh tam giác ABD = tam giác ACE . c, tam giác AED là tam giác gì?
Cho Tam giác ABC có AB=AC và tia phân giác góc A cắt BC ở H.
a)Chứng minh Tam giác ABH=Tam giác ACH
b)Chứng minh AH vuông góc BC
c)Vẽ HD vuông góc AB(D€AB) và HE vuông góc AC(E€AC).Chứng minh DE//BC
Bài 2: Cho tam giác ABC có góc A>90 độ , lấy điểm M thuộc cạnh AB .
a) So sánh AC và MC
b) Chứng minh tam giác MBC là tam giác tù
c) Chứng minh AC <MC <BC
Bài 3: Cho tam giác MNP có Góc N>90 độ , trên tia đối của tia NP lấy điểm Q .
a) So sánh MN và MP
b) Chứng minh tam giác MPQlà tam giác tù.
c) Chứng minh MN<MP<MQ
Bài 4: Cho tam giác ABC có AB=3 cm, AC=4 cm
a) So sánh góc B với gócC
b) Hạ AH vuông góc với BC tại H . So sánh góc BAH và góc CAH
Bài 5: Cho tam giác ABC có AB = 5 cm, AC = 3 cm
a) So sánh góc B với góc C
b) So sánh hai góc ngoài tại các đỉnh B và C của tam giác ABC
Bài 6: Cho tam giác ABC vuông tại A có AC=2AB . Lấy điểm E trên cạnh AC sao cho
AB=AE . Trên tia đối của tia EB lấy điểm D sao cho EB=ED
a) Chứng minh tam giác ABE= tam giác CDE
b) So sánh góc ABE và góc CBE
Cho tam giác ABC có AB = AC, kẻ BD vuông góc với AC, CE vuông góc với AB (D thuộc AC, E thuộc AB)
a) Chứng minh: BD=CE
b) Gọi O là giao điểm của BD và CE. Chứng minh tam giác OBE = tam giác OCD
c) Chứng minh AO là tia phân giác của góc BAC và AO vuông góc với BC
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{A}\) chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE