Tính các tổng sau bằng phương pháp hợp lí nhất:
2/3.5 + 2/5.7+...+2/37.39
Tính các tổng sau bằng phương pháp hợp lí nhất:
A= 1/1.2 + 1/2.3 + 1/3.4+...+ 1/49.50
B= 2/3.5 + 2/5.7 + 2/7.9+...+ 2/37.39
A=1/1-1/2+1/2-1/3+1/3-1/4+....+1/49-1/50
A=1/1-1/50
A=49/50
Vay A=49/50
B=1/3-1/5+1/5-1/7....+1/37-1/39
B=1/3-1/39
b=36/117
B=4/13
1. tính tổng bằng phương pháp hợp lý nhất:
C=\(\frac{1}{1X2}+\frac{1}{1X3}+......+\frac{1}{49X50}\)
D=\(\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{37.39}\)
GIÚP MÌNH NHA ! X là nhân đó
Câu C sai đề rùi!
Đề đúng : C =1/1.2 + 1/2.3 +......+ 1/49.50
C = 1 - 1/2 + 1/2 - 1/3 +......+1/49 - 1/50
C = 1 - 1/50
C = 49/50
D = 2/3.5 + 2/5.7 +.......+ 2/37.39
D = 1/3 - 1/5 + 1/5 - 1/7 +.......+ 1/37 - 1/39
D = 1/3 - 1/39
D = 12/39
tính B = 2/3.5 + 2/5.7 + 2/7.9 + ... + 2/37.39
\(B=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{37.39}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{37}-\frac{1}{39}=\frac{1}{3}-\frac{1}{39}=\frac{12}{39}=\frac{4}{13}\)
Tính B=2/3.5+2/5.7+...+12/37.39
Tính các tổng sau bằng phương pháp hợp lí nhất:
B=2/3*5+2/5*7+2/7*9+...+2/37*39
B = 2/3.5 + 2/5.7 + 2/7.9 + ... + 2/37.39
Tham khảo :Câu hỏi của hoàng quỳnh dương - Toán lớp 7 - Học toán với OnlineMath
\(B=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{37.39}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{37}-\frac{1}{39}\)
\(=\frac{1}{3}-\frac{1}{39}\)
\(=\frac{4}{13}\)
Study well ! >_<
b=2/3.5+2/5.7+2/7.9+...+2/37.39
\(B=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{37.39}\)
\(B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{37}-\frac{1}{39}\)
\(B=\frac{1}{3}-\frac{1}{39}=\frac{13}{39}-\frac{1}{39}=\frac{12}{39}\)
\(B=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{37.39}\)
\(\Rightarrow B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{37}-\frac{1}{39}\)
\(\Rightarrow B=\frac{1}{3}-\frac{1}{39}=\frac{12}{39}\)
Tính tổng:
A=\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+\(\frac{2}{7.9}\)+........+\(\frac{2}{37.39}\)
\(\frac{2}{3.5}+\frac{2}{5.7}+........+\frac{2}{37.39}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+......+\frac{1}{37}-\frac{1}{39}\)
\(=\frac{1}{3}-\frac{1}{39}\)
\(=\frac{13}{39}-\frac{1}{39}\)
\(=\frac{12}{39}=\frac{4}{13}\)
ta có A=1/3-1/5+1/5-1/7+1/7-1/9+....+1/37-1/39
=1/3-1/39
=12/39
A = 2/3.5 + 2/5.7 + 2/7.9 + ... + 2/37.39
=1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ... + 1/37 - 1/39
=1/3 - 1/39
=12/39
Tính tổng
A=1/1.2+1/2.3+.......+1/49/50
B=2/3.5+2/5.7+..........+2/37.39
C=3/4.7+3/7.10+.........+3/37.39
Ai giúp mình với!!!!!!!!!!!!!!!!!!!!!!!!!!!
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\)
\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(A=\dfrac{1}{1}-\dfrac{1}{50}=\dfrac{49}{50}\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(A=\dfrac{1}{1}-\dfrac{1}{50}=\dfrac{50}{50}-\dfrac{1}{50}=\dfrac{49}{50}\)
A = \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\)
= \(\left(1-\dfrac{1}{2}\right)\)+\(\left(\dfrac{1}{2}-\dfrac{1}{3}\right)\)+...+\(\left(\dfrac{1}{49}-\dfrac{1}{50}\right)\)
= \(\left(1-\dfrac{1}{50}\right)\) = \(\dfrac{49}{50}\)