Với p,q là số nguyên tố lớn hơn 5. CMR: p4 - q4 chia hết cho 240.
Với q, p là số nguyên tố lớn hơn 5 chứng minh rằng: p4 – q4 chia hết cho 240
https://olm.vn/hoi-dap/detail/4762440095.html
Với q, p là số nguyên tố lớn hơn 5 chứng minh rằng: p4 – q4 chia hết cho 240
Ta có: p4 – q4 = (p4 – 1 ) – (q4 – 1) ; 240 = 8 .2.3.5
Chứng minh p4 – 1 240
- Do p >5 nên p là số lẻ
+ Mặt khác: p4 –1 = (p –1) (p + 1) (p2 +1)
--> (p-1 và (p+1) là hai số chẵn liên tiếp => (p – 1) (p+1) 8
+ Do p là số lẻ nên p2 là số lẻ -> p2 +1 2
- p > 5 nên p có dạng:
+ p = 3k +1 --> p – 1 = 3k + 1 – 1 = 3k 3 --> p4 – 1 3
+ p = 3k + 2 --> p + 1 = 3k + 2 + 1 = 3k +3 3 --> p4 – 1 3
- Mặt khác, p có thể là dạng:
+ P = 5k +1 --> p – 1 = 5k + 1 – 1 = 5k 5 --> p4 – 1 5
+ p = 5 k+ 2 --> p2 + 1 = (5k +2)2 +1 = 25k2 + 20k +5 5 --> p4 – 1 5
+ p = 5k +3 --> p2 +1 = 25k2 + 30k +10 --> p4 –1 5
+ p = 5k +4 --> p + 1 = 5k +5 5 --> p4 – 1 5
Vậy p4 – 1 8 . 2. 3 . 5 hay p4 – 1 240
Tương tự ta cũng có q4 – 1 240
Vậy: (p4 – 1) – (q4 –1) = p4 – q4 240
chúc bạn học tốt :)
Với q,p là số nguyên tố lớn hơn 5 chứng mjnh rằng p4-q4 chia hết cho 240
Số nguyên tố lớn hơn 5 có dạng 3k + 1 hoặc 3 k + 2.
Thay từng trường hợp vào thì chứng minh được.
**** thì anh kết bạn với chú !
với p,q là số nguyên tố lớn hơn 5 CMR p4xq4 chia hết cho 240
Với q,p là số nguyên tố lớn hơn 5 chứng minh rằng: p4-q4 ⋮ 24
Vì p là số nguyên tố và lớn hơn 5 nên p lẻ
Khi đó :
\(p^4-q^4=\left(p^2-q^2\right)\left(p^2+q^2\right)=\left(p-q\right)\left(p+q\right)\left(p^2+q^2\right)\)
Dễ thấy, \(p-q;p+q;p^2+q^2\) chia hết cho 2 và có một số chia hết cho 4.
Nên \(p^4-q^4⋮16\left(1\right)\)
Lại có \(p^4-q^4\)
\(=\left(p^4-1\right)-\left(q^4-1\right)\\ =\left(p-1\right)\left(p+1\right)\left(p^2+1\right)-\left(q-1\right)\left(q+1\right)\left(q^2+1\right)\)
Vì p nguyên tố và lớn hơn 5 nên \(p⋮̸3\)
Mà \(\left(p-1\right)p\left(p+1\right)⋮3\)
\(\Rightarrow\left(p-1\right)\left(p+1\right)⋮3\)
Lại có : \(\left(p-1\right)\left(p+1\right)\left(p^2+1\right)=\left(p-1\right)\left(p+1\right)\left(p^2-4+5\right)\)
\(=\left(p-2\right)\left(p-1\right)\left(p+1\right)\left(p+2\right)+5\left(p-1\right)\left(p+1\right)⋮5\)
Nên \(p^4-1⋮15\)
Tương tự \(q^4-1⋮15\)
Nên \(p^4-q^4⋮15\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow p^4-q^4⋮240\)
với q,p là số nguyên tố lớn hơn 5 , CMR :
p4 - q4 chia hết cho 240
Bạn xem bài này nhé!
http://olm.vn/hoi-dap/question/60049.html
Rút được ra là:
p4-1 chia hết cho 240 với mọi số nguyên tố p>5
Giúp mk nhak...Mk sắp thi rồi...Ai trả lời đúng mk tick cho !!!
1. (Dạng số nguyên tố,hợp số)
a.Tìm số nguyên tố p để : p+10 và p+14 đều là các số nguyên tố
b.Với p,q là các số nguyên tố bé hơn 5,chứng minh rằng :
p4 và q4 chia hết cho 240.
c.Cho p và p+4 là các số nguyên tố (p lớn hơn 3).Chứng minh p + 8 là hợp số.
HELP ME !!!
Đoạn p,q là p mũ 4 và q mũ 4 nha
em mớ lớp 5 nên không biết
a)Xét p=2
=>p+10 = 12 (loại0
p=3 =>p+10 và p+14 đều là số nguyên tố.nếu p>3 =>p=3k+1 , p=3k+2
TH1:p = 3k+1 =>p+14=3k+1+14=3k+15(loại)
TH2:p=3k+2=>p+10=3k+2+10=3k+12(loại)
=>p=3
Câu 1:Với p,q là số nguyên tố lớn hơn 5,CMR:
p^4 - q^4 chia hết cho 240
Ta có: p4 – q4 = (p4 – 1 ) – (q4 – 1) ; 240 = 8 .2.3.5
Chứng minh p4 – 1 240
- Do p >5 nên p là số lẻ
+ Mặt khác: p4 –1 = (p –1) (p + 1) (p2 +1)
--> (p-1 và (p+1) là hai số chẵn liên tiếp => (p – 1) (p+1) 8
+ Do p là số lẻ nên p2 là số lẻ -> p2 +1 2
- p > 5 nên p có dạng:
+ p = 3k +1 --> p – 1 = 3k + 1 – 1 = 3k 3 --> p4 – 1 3
+ p = 3k + 2 --> p + 1 = 3k + 2 + 1 = 3k +3 3 --> p4 – 1 3
- Mặt khác, p có thể là dạng:
+ P = 5k +1 --> p – 1 = 5k + 1 – 1 = 5k 5 --> p4 – 1 5
+ p = 5 k+ 2 --> p2 + 1 = (5k +2)2 +1 = 25k2 + 20k +5 5 --> p4 – 1 5
+ p = 5k +3 --> p2 +1 = 25k2 + 30k +10 --> p4 –1 5
+ p = 5k +4 --> p + 1 = 5k +5 5 --> p4 – 1 5
Vậy p4 – 1 8 . 2. 3 . 5 hay p4 – 1 240
Tương tự ta cũng có q4 – 1 240
Vậy: (p4 – 1) – (q4 –1) = p4 – q4 240
Xét p,q có dạng 2k + 1 hoặc 5k + 1 (k là số tự nhiên)
Ta có: p4 – q4 = (p4 – 1 ) – (q4 – 1) ; 240 = 8 .2.3.5
Chứng minh p4 – 1 240
- Do p >5 nên p là số lẻ
+ Mặt khác: p4 –1 = (p –1) (p + 1) (p2 +1)
--> (p-1 và (p+1) là hai số chẵn liên tiếp => (p – 1) (p+1) 8
+ Do p là số lẻ nên p2 là số lẻ -> p2 +1 2
- p > 5 nên p có dạng:
+ p = 3k +1 --> p – 1 = 3k + 1 – 1 = 3k 3 --> p4 – 1 3
+ p = 3k + 2 --> p + 1 = 3k + 2 + 1 = 3k +3 3 --> p4 – 1 3
- Mặt khác, p có thể là dạng:
+ P = 5k +1 --> p – 1 = 5k + 1 – 1 = 5k 5 --> p4 – 1 5
+ p = 5 k+ 2 --> p2 + 1 = (5k +2)2 +1 = 25k2 + 20k +5 5 --> p4 – 1 5
+ p = 5k +3 --> p2 +1 = 25k2 + 30k +10 --> p4 –1 5
+ p = 5k +4 --> p + 1 = 5k +5 5 --> p4 – 1 5
Vậy p4 – 1 8 . 2. 3 . 5 hay p4 – 1 240
Tương tự ta cũng có q4 – 1 240
Vậy: (p4 – 1) – (q4 –1) = p4 – q4 240
Với p,q là số nguyên tố lớn hơn 5, CMR:
p4 - q4 chia hết cho 240
Ta có: p4-q4-(p4-1)-(q4-1); 240 - 8.2.3.5. Ta cần chứng minh p4-1 chia hết cho 240
- Do p là số nto lớn hơn 5=> p là số lẻ
+ Mặt khác: p4-1-(p-1)(p+1)(p2+1)
=> (p-1) và (p+1) là hai số chẵn liên tiếp => (p-1)(p+1) chia hết cho 8
+ Do p là số lẻ nên p2 là số lẻ => p2+1 chia hết cho 2
p > 5 nên p có dạng
+ p-3k+1 => p-1-3k+1-1-3k chia hết cho 3 =>p4 - 1 chia hết cho 3
..............................
Tương tự ta cũng có q4 - 1 chia hết cho 240 .
Vậy (p4-1)-(q4-1) = p4 - q4 cho 240
~~Học tốt~~