Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bảo hay Bẻo ????=))
Xem chi tiết
Nguyễn Mỹ Dàng
Xem chi tiết
JOKER_Võ Văn Quốc
Xem chi tiết
Thầy Giáo Toán
15 tháng 8 2016 lúc 21:29

Ta có \(m=\frac{3^p-1}{2}\cdot\frac{3^p+1}{4}.\)   Vì \(p\) là số nguyên tố lẻ nên \(3^p+1\) chia hết cho 4 và lớn hơn 4. Mặt khác \(3^p-1\) là số chẵn lớn hơn \(2\). Suy ra \(m\) là tích của 2 số nguyên lớn hơn 1, do đó là hợp số. Vì \(9^p-1\), chia hết cho  \(m\) nên \(m\) không chia hết cho \(3.\)  


Cuối cùng, \(m-1=\frac{9^p-9}{8}\).  Theo định lý Fermat nhỏ \(9^p-9\) chia hết cho \(p\). Mặt khác, \(9^p-9=9\left(9^{p-1}-1\right)=9\cdot8\cdot\left(9^{p-2}+9^{p-3}+\dots+1\right)\)

chia hết cho \(8\times2=16.\) Suy ra \(m-1\) là số chẵn. Vậy \(m-1\) chia hết cho  \(2p.\) Suy ra \(3^{m-1}-1\)  chia hết cho \(3^{2p}-1=9^p-1\). Vậy \(3^{m-1}-1\) chia hết cho \(m\). Hay nói cách khác \(3^{m-1}\) chia \(m\) dư \(1.\)

đặng thùy dung
15 tháng 8 2016 lúc 16:05

bạn ơi hình như bạn viết sai đề bài

NhungNguyễn Trang
Xem chi tiết
Vũ Diệu Linh
Xem chi tiết
Nguyễn Hoàng Minh
16 tháng 11 2021 lúc 19:44

Đây là tích 4 số nguyên liên tiếp nên chia hết cho \(1\cdot2\cdot3\cdot4=24\)

Mà 24 chia hết cho 3 và 8 nên n(n+1)(n+2)(n+3) chia hết cho 3 và 8

Huỳnh Trần Thảo Nguyên
Xem chi tiết
Trần Trung Hiếu
Xem chi tiết
nguyễn vũ kim anh
Xem chi tiết
T.Ps
8 tháng 7 2019 lúc 21:00

#)Giải : (Bài này ez mak :v)

\(\frac{a+2}{a-2}=\frac{b+3}{b-3}\)

\(\Rightarrow\left(a+2\right)\left(b-3\right)=\left(a-2\right)\left(b+3\right)\)(bước này mk làm tắt đi nhé)

\(\Rightarrow3a=2b\)

\(\Rightarrow\frac{a}{2}=\frac{b}{3}\)

\(\Rightarrowđpcm\)

Edogawa Conan
8 tháng 7 2019 lúc 21:01

Ta có: \(\frac{a+2}{a-2}=\frac{b+3}{b-3}\)

=> \(\frac{\left(a-2\right)+4}{a-2}=\frac{\left(b-3\right)+6}{b-3}\)

=> \(1+\frac{4}{a-2}=1+\frac{6}{b-3}\)

=> \(\frac{4}{a-2}=\frac{6}{b-3}\)

=> \(4\left(b-3\right)=6\left(a-2\right)\)

=> \(4b-12=6a-12\)

=> \(4b=6a\)

=> \(2b=3a\)

=> \(\frac{b}{3}=\frac{a}{2}\)

Tiểu _ Vy _ Fa
8 tháng 7 2019 lúc 21:01

vội ???? chưa lm bài hay sao vậy tòi

Nalumi Lilika
Xem chi tiết