tìm x và y nguyên sao cho :
(x-3)/(y-2)=3/2 và x-y=4
1. Tìm các số tự nhiên x và y sao cho:
a) x/3 - 4/y = 1/5
b) 4/x + y/3 = 5/6 .
2Tìm các số nguyên x và y sao cho:
a) 5/x - y/3 = 1/6
b) x/6 - 2/y = 1/30
2:
a: 5/x-y/3=1/6
=>\(\dfrac{15-xy}{3x}=\dfrac{1}{6}\)
=>\(\dfrac{30-2xy}{6x}=\dfrac{x}{6x}\)
=>30-2xy=x
=>x(2y+1)=30
=>(x;2y+1) thuộc {(30;1); (-30;-1); (10;3); (-10;-3); (6;5); (-6;-5)}
=>(x,y) thuộc {(30;0); (-30;-1); (10;1); (-10;-2); (6;2); (-6;-3)}
b: x/6-2/y=1/30
=>\(\dfrac{xy-12}{6y}=\dfrac{1}{30}\)
=>\(\dfrac{5xy-60}{30y}=\dfrac{y}{30y}\)
=>5xy-60=y
=>y(5x-1)=60
=>(5x-1;y) thuộc {(-1;-60); (4;15); (-6;-10)}(Vì x,y là số nguyên)
=>(x,y) thuộc {(0;-60); (1;15); (-1;-10)}
Tìm các số nguyên x và y sao cho: (x+2)^2+2.(y-3)^2<4
Tìm các số nguyên x và y sao cho: (x+2)^2+2.(y-3)^2<4
Biến đổi bt tương đương : (x^2-1)/2 =y^2
Ta có: vì x,y là số nguyên dương nên
+) x>y và x phải là số lẽ.
Từ đó đặt x=2k+1 (k nguyên dương);
Biểu thức tương đương 2*k*(k+1)=y^2 (*);
Để ý rằng:
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là :
{1,y, y^2} ;
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1;
=>x=3.
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).
Biến đổi bt tương đương :
(x^2-1)/2 =y^2
Ta có: vì x,y là số nguyên dương nên +) x>y và x phải là số lẽ. Từ đó đặt x=2k+1 (k nguyên dương); Biểu thức tương đương 2*k*(k+1)=y^2 (*); Để ý rằng: Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là :
{1,y, y^2} ; từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1; =>x=3. Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).
Biến đổi bt tương đương :
(x^2-1)/2 =y^2
Ta có: vì x,y là số nguyên dương nên +) x>y và x phải là số lẽ. Từ đó đặt x=2k+1 (k nguyên dương); Biểu thức tương đương 2*k*(k+1)=y^2 (*); Để ý rằng: Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là :
{1,y, y^2} ; từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1; =>x=3. Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).
Câu 1: Tìm các số nguyên x,y sao cho :
a/ x.y = -5
b/ x.y= -5 và x > y
c/ (x+1)(y-2)= -5
Câu 2: Tìm các số nguyên x,y sao cho :
a/ x.y = -3
b/ x.y= -3 và x < y
c/ (x-1)(y+1)= -3
Câu 3: Tìm các số nguyên x,y sao cho :
a/ x.y= -7
b/x.y=-7 và x<y
c/ (x-5).(y+4) = -7
Mình cần gấp!!!
Ai giải sớm mk tick cho ạh :333
Cảm ơn...
câu 1 a) xy=-5 => (x,y)=(1,-5),(-1,5)
b) xy=-5 với x>y=>x=1,y=-5
c)(x+1)(y-2)=-5 => * x+1=1 và y-2=-5 => x=-1, y=-3
* x+1=-5 và y-2=1=> x=-6 , y=3
câu 2 , câu 3 tương tự
Tìm các số nguyên x và y sao cho: (x+2)^2+2.(y-3)^2<4
(x+2)2+2(y-3)2<4
với x và y là số nguyên mà (x+2)2 và (y-3)2 luôn lớn hơn hoặc bằng 0 thì các cặp số (x+2)2 và 2(y-3)2 phải là các số chính phương nhỏ hơn 4 và các số chính phương nhỏ hơn 4 là 0và 1
TH1: (x+2)2=2(y-3)2=0
=> (x+2)2+2(y-3)2=0
=> \(\begin{cases}x+2=0\\y-3=0\end{cases}\)
=>\(\begin{cases}x=-2\\y=3\end{cases}\)
TH2: (x+2)2=0 và (y-3)2=1
=> x=-2
ta có :
(y-3)2=1
=>\(y-3=\pm1\)
=>\(\left[\begin{array}{nghiempt}y-3=-1\\y-3=1\end{array}\right.\)
=>\(\left[\begin{array}{nghiempt}y=2\\y=4\end{array}\right.\)
TH3:(x+2)2=1 và (y-3)2=0
=>\(\left[\begin{array}{nghiempt}x+2=1\\x+2=-1\end{array}\right.\)
=>\(\left[\begin{array}{nghiempt}x=-1\\x=-3\end{array}\right.\)
ta có: (y-3)2=0=> y=3
các cặp số nguyên x và y thoả mãn đề bài là:
+ với x=-2 thì y=3 hoặc y=4 hoặc y=2
+ với x=-1 hoặc x=-3 thì y đều =3
Tìm các số nguyên x và y sao cho x^3+x^2+x+1=y^3
x^3+x^2+x+1=y^3 => y^3 - x^3 = x^2 + x + 1 = (x + 1/2)^2 + 3/4 > 0
=> y^3 > x^3 (1)
mặt khác:
5x^2 +11x+5 =5(x+11/10)^2 +19/20 > 0
y^3 = x^3 + x^2 + x +1 < x^3 + x^2 + x +1 + 5x^2 + 11x +5 = x^3 +6x^2 +12x +8 = (x + 2)^3 (2)
(1) và (2) => y^3 = (x + 1)^3 => y = x +1
=> x^3+x^2 +x +1 = x^3 +3x^2 +3x +1 = y^3
<=> 2x^2 + 2x =0
<=> 2x(x+1)=0
=> x = 0 và y=1
hoặc x = -1 và y = 0
x^3+x^2+x+1=y^3 => y^3 - x^3 = x^2 + x + 1 = (x + 1/2)^2 + 3/4 > 0
=> y^3 > x^3 (1)
mặt khác:
5x^2 +11x+5 =5(x+11/10)^2 +19/20 > 0
y^3 = x^3 + x^2 + x +1 < x^3 + x^2 + x +1 + 5x^2 + 11x +5 = x^3 +6x^2 +12x +8 = (x + 2)^3 (2)
(1) và (2) => y^3 = (x + 1)^3 => y = x +1
=> x^3+x^2 +x +1 = x^3 +3x^2 +3x +1 = y^3
<=> 2x^2 + 2x =0
<=> 2x(x+1)=0
=> x = 0 và y=1
hoặc x = -1 và y = 0
1 Tìm 2 số tự nhiên a và b biết a - b=5 và (a,b)/[a,b]=1/6
2. Tìm x,y là số nguyên sao cho y/3 - 1/x=1/3
3. Tìm số nguyên tố x và y biết x2 + 45= y2
4. Tìm số tự nhiên 11/17<a/b<23/29 và 8b - 9a=31
Bài 10. Tìm số tự nhiên n, biết rằng: 1 + 2 + 3 + ..... + n = 820
Bài 11. Tìm các số tự nhiên x, y, sao cho:
a/ (2x+1)(y-3) = 10
b/ (3x-2)(2y-3) = 1
c/ (x+1)(2y-1) = 12
d/ x + 6 = y(x-1)
e/ x-3 = y(x+2)
f/ x + 2y + xy = 5
g/ 3x + xy + y = 4
Bài 12. Tìm số nguyên tố p sao cho:
a/ p + 2 và p + 4 là số nguyên tố
b/ p + 94 và p + 1994 cũng là số nguyên tố
a)Tìm x,y,z biết :
\(\left\{{}\begin{matrix}x+y+z=0\\x^2+y^2+z^2=6\\x^3+y^3+z^3=6\end{matrix}\right.\)
b)Tìm các số nguyên x,y t/m:
2x2+\(\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\) sao cho tích x.y có GTLN
c)Cho a+b+c=0 và a2+b2+c2=14. Tính GT của bt M=a4+b4+c4