Cho hình chóp S.ABCD lấy một điểm M thuộc miền trong tam giác SBC.Lấy một điểm N thuộc miền trong tam giác SCD.
tìm giao tuyến của SAC & SBD
Cho hình chóp S.ABCD có AB và CD không song song . Gọi M là một điểm thuộc miền trong của tam giác SCD .
a) Tìm giao điểm N của đường thẳng CD và mặt phẳng (SBM)
b) Tìm giao tuyến của 2 mặt phẳng (SBM) và (SAC)
c) Tìm giao điểm I của đường thẳng BM và mp(SAC)
d) tìm giao điểm P của SC và mp(ABM) , từ đó suy ra giao tuyến của 2 mặt phẳng (SCD) và (ABM) .
a/ Kéo dài SM cắt CD ở N
\(\left(SBM\right)\equiv\left(SBN\right)\)
\(\left(SBN\right)\cap\left(ABCD\right)=BN\)
\(BN\cap CD=\left\{N\right\}\Rightarrow CD\cap\left(SBM\right)=\left\{N\right\}\)
b/ Tương tự như câu a, ta sẽ tiếp tục sử dụng (SNB) bởi (SNB)=(SMB)
\(AC\cap BN=\left\{H\right\}\Rightarrow H=\left(SAC\right)\cap\left(SBN\right)\)
\(\Rightarrow\left(SAC\right)\cap\left(SBN\right)=SH\Rightarrow\left(SAC\right)\cap\left(SBM\right)=SH\)
c/ \(SH\cap BM=\left\{I\right\}\Rightarrow I=BM\cap\left(SAC\right)\)
d/ \(SC\subset\left(SCD\right)\)
\(AB\cap CD=\left\{K\right\}\Rightarrow\left(ABM\right)\cap\left(SCD\right)=MK\) (câu d luôn :v)
\(\Rightarrow MK\cap SC=\left\{P\right\}\Rightarrow P=\left(ABM\right)\cap SC\)
Cho hình chóp S.ABCD có đáy ABCD là tứ giác lồi .gọi M là điểm thuộc miền trong tam giác SCD .tìm giao tuyến của 2 mặt phẳng a) (SBC) và (SAD) b) (AMC) và (SAD) c) (SAM) và (ABCD) d) (SBM) và (SAC)
Nối BC và AD kéo dài cắt nhau tại F
\(\Rightarrow SF=\left(SBC\right)\cap\left(SAD\right)\)
Trong mp (SCD), nối CM kéo dài cắt SD tại G
\(\Rightarrow AG=\left(AMC\right)\cap\left(SAD\right)\)
Trong mp (SCD), nối SM kéo dài cắt CD tại E
\(\Rightarrow AE=\left(SAM\right)\cap\left(ABCD\right)\)
Trong mp (ABCD), nối BE cắt AC tại H
\(\Rightarrow SH=\left(SBM\right)\cap\left(SAC\right)\)
Cho hình chóp S.ABCD có đáy là tứ giác ABCD có hai cạnh đối diện không song song. Lấy điểm M thuộc miền trong của tam giác SCD. Tìm giao tuyến của hai mặt phẳng :
a) (SBM) và (SCD)
b) (ABM) và (SCD)
c) (ABM) và (SAC)
Cho hình chóp S.ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCD.
a) Tìm giao điểm N của đường thẳng CD và mp(SBM).
b) Tìm giao tuyến của hai mặt phẳng (SBM) và (SAC).
c) Tìm giao điểm I của đường thẳng BM và mặt phẳng (SAC).
d) Tìm giao điểm P của SC và mặt phẳng (ABM), từ đó suy ra giao tuyến của hai mặt phẳng (SCD) và (ABM).
a) SM, CD cùng thuộc (SCD) và không song song.
Gọi N là giao điểm của SM và CD.
⇒ N ∈ CD và N ∈ SM
Mà SM ⊂ (SMB)
⇒ N ∈ (SMB)
⇒ N = (SMB) ∩ CD.
b) N ∈ CD ⊂ (ABCD)
⇒ BN ⊂ (ABCD)
⇒ AC; BN cùng nằm trong (ABCD) và không song song
Gọi giao điểm của AC và BN là H.
+ H ∈ AC ⊂ (SAC)
+ H ∈ BN ⊂ (SBM)
⇒ H ∈ (SAC) ∩ (SBM)
Dễ dàng nhận thấy giao điểm thứ hai của (SAC) và (SBM) là S
⇒ (SAC) ∩ (SBM) = SH.
c) Trong mp(SBM), gọi giao điểm của BM và SH là I, ta có:
I ∈ BM
I ∈ SH ⊂ (SAC).
⇒ I = BM ∩ (SAC).
) Trong mp(SAC), gọi giao điểm của AI và SC là P.
+ P ∈ AI, mà AI ⊂ (AMB) ⇒ P ∈ (AMB)
⇒ P = (AMB) ∩ SC.
Lại có P ∈ SC, mà SC ⊂ (SCD) ⇒ P ∈ (SCD).
⇒ P ∈ (AMB) ∩ (SCD).
Lại có: M ∈ (SCD) (gt)
⇒ M ∈ (MAB) ∩ (SCD)
Vậy giao điểm của (MAB) và (SCD) là đường thẳng MP.
Mọi người ơi giúp mình với ạ, mình cảm ơn rất nhiều
Cho hình chóp S.ABCD. Gọi M là một điểm thuộc SB, N thuộc miền trong tam giác SCD.
a) Tìm giao tuyến của (AMN) với (ABCD), (AMN) với (SCD)
b) Tìm giao tuyến của (CMN) với (SAB)
Cho hình chóp S.ABCD có đáy là hình bình hành. M là điểm thuộc miền trong của tam giác SBC. Tìm giao tuyến của (ABM) và (SDC).
Các bạn nên suy nghĩ trước khi xem giải nhé. Như thế sẽ giúp ích rất nhiều cho việc tiến bộ đối với môn toán.
Rất hoan nghênh các bạn viết tay xong chụp ảnh gửi lên. Chúc các bạn học tốt!
Cho hình chóp S.ABCD, đáy là tứ giác ABCD có AB cắt CD tại E. Lấy điểm M thuộc miền
trong của tam giác SCD. Tìm giao tuyến của hai mặt phẳng:
a. (SBM) và (SCD)
b. (ABM) và (SCD)
c. (ABM) và (SAC)
m.n giúp e với
Cho hình chóp S.ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCD
a) Tìm giao điểm N của đường thẳng CD và mặt phẳng (SBM)
b) Tìm giao tuyến của hai mặt phẳng (SBM) và (SAC)
c) Tìm giao điểm I của đường thẳng BM và mặt phẳng (SAC)
d) Tìm giao điểm P của SC và mặt phẳng (ABM), từ đó suy ra giao tuyến của hai mặt phẳng (SCD) và (ABM)
a) Trong (SCD) kéo dài SM cắt CD tại N, Chứng minh N thuộc (SBM)
b) (SBM) ≡ (SBN). Giao tuyến cần tìm là SO
c) Trong (SBN) ta có MB giao SO tại I
d) Trong (ABCD) , ta có AB giao CD tại K, Trong (SCD), ta có KQ giao SC tại P
Từ đó suy ra được giao tuyến của hai mặt phẳng (SCD) và (ABM) là KQ.
cho hình chóp tứ giác S.ABCD (AB không song song CD ) và một điểm M thuộc miền trong của tam giác SCD. Tìm giao điểm của đường thẳng BM và mặt phẳng (SAC).
mọi người ai biết lm giúp mk với mk dag cần gấp
cảm ơn nhiều.
Gọi I = DM SC (cùng trong (SDC))
Chọn (BID) chứa BM
I (BID) (SAC)
Gọi E= BD AC (cùng trong (ABCD))
E thuộc BD con (BID)
E thuộc AC con (SAC)
=> E thuộc (BID) (SAC)
(BID) (SAC) = IE
Gọi H=IE BM (cùng trong (BID))
H thuộc BM
H thuộc IE con (SAC)
=> H = BM (SAC)