(x^2-16).(x+3)=0
x=4x=4 là nghiệm của những phương trình nào dưới đây?
\frac{x^2-6x+8}{x^2-9x+20}=0x2−9x+20x2−6x+8=0 \frac{4x-16+\left(8-2x\right)}{x^2+16}=0x2+164x−16+(8−2x)=0 \frac{x^2-16}{x^3+16}=0x3+16x2−16=0 \frac{x^3-64}{x^2-16}=0x2−16x3−64=0Tìm x
2x-7+(x-14)=0
x^2-6x=0
(x-3)(16-4x)=0
(x-3)-(16-4x)=0
(x-3)+(16-4x)=0
Mấy câu này khá giống nhau nhé anh (câu 1 giống câu 4 và 5, cấu 2 giống câu 3) =)))
Câu 1: 2x - 7 + (x - 14) = 0
<=> 3x -21 = 0
<=> 3x = 21 => x = 7
Câu 2:
x2 - 6x = 0 <=> x.(x - 6) = 0 => \(\orbr{\begin{cases}x=0\\x-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}\)
Chúc anh học tốt !!!
Câu 1, 2 có người làm rồi nên mik làm tiếp cho mấy câu tiếp. Cứ áp dụng A.B = 0 => A = 0 hoặc B = 0
3; ( x - 3 )( 16 - 4x ) = 0
=> x - 3 = 0 hoặc 16 - 4x = 0
=> x = 3 hoặc x = 4
Vậy x = 3 hoặc x = 4.
4; ( x - 3 ) - ( 16 - 4x ) = 0
=> x - 3 - 16 + 4x = 0
=> ( x + 4x ) - ( 3 + 16 ) = 0
=> 5x - 19 = 0
=> x = 19/5
Vậy x = 19/5
5; ( x + 3 ) + ( 16 - 4x ) = 0
=> x + 3 + 16 - 4x = 0
=> ( x - 4x ) + ( 16 + 3 ) = 0
=> 3x + 19 = 0
=> x = 19/3
Vậy x = 19/3
a,(x-4).(x+3)=0
b,(x^2+16).(x^2-16)=0
c,(x^2+10).(x-3)<0
d,(-x^2-9).(2-x)<0
e,(x-2).(x+4)=0
Lam nhung cau cac ban biet nhe
Ai lam dung minh tick tick tick cho
a) \(\left(x-4\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-4=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-3\end{cases}}\)
Vậy \(x\in\left\{-3;4\right\}\)
b)\(\left(x^2+16\right)\left(x^2-16\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+16=0\\x^2-16=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{-16}\\x=\sqrt{16}=4\end{cases}}\)
Vậy \(x=4\)
\(\left(x-4\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=-3\end{cases}}\)
\(\left(x^2+16\right)\left(x^2-16\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+16=0\\x^2-16=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=-16\left(loại\right)\\x^2=16\end{cases}}\Rightarrow x=\left(\pm4\right)^2\)
\(\left(x-2\right)\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-4\end{cases}}\)
c) \(\left(x^2+10\right)\left(x-3\right)< 0\)
\(\Rightarrow\hept{\begin{cases}x^2+10\\x-3\end{cases}}\)trái dấu
TH1 : \(\hept{\begin{cases}x^2+10>0\\x-3< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2>-10\\x< 3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\inℤ\\x< 3\end{cases}}\Leftrightarrow x\in\left\{...;1;2\right\}\)
TH2 : \(\hept{\begin{cases}x^2+10< 0\\x-3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2< -10\\x>3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\in\varnothing\\x>3\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)
\(\Rightarrow x\in\left\{...;1;2\right\}\)
Tìm x biết: a)x(x-3)+x-3=0 b)(5x-4)^2-16^2=0
1. 6x(x - 10) - 2x+20=0 6. 3x2 - 6x+3=0
2. 3x2(x - 3) + 3(3 - x)=0 7. 4x2 - 10x+2=0
3. x2 - 8x+16=2(x -4) 8. x2 - 12x -18=0
4. x2 - 16 + 7x ( x+4)=0 9. 3x2 - 10x+3=0
5. x2 - 13x - 14=0 10. 5x2 - 10x+10=0
\(1.6x\left(x-10\right)-2x+20=0\)
⇔\(6x\left(x-10\right)-2\left(x-10\right)=0\)
⇔ \(2\left(x-10\right)\left(3x-1\right)=0\)
⇔ x = 10 hoặc x = \(\dfrac{1}{3}\)
KL....
\(2.3x^2\left(x-3\right)+3\left(3-x\right)=0\)
⇔ \(3\left(x-3\right)\left(x^2-1\right)=0\)
⇔ \(x=+-1\) hoặc \(x=3\)
KL....
\(3.x^2-8x+16=2\left(x-4\right)\)
⇔ \(\left(x-4\right)^2-2\left(x-4\right)=0\)
⇔ \(\left(x-4\right)\left(x-6\right)=0\)
⇔ \(x=4\) hoặc \(x=6\)
KL.....
\(4.x^2-16+7x\left(x+4\right)=0\)
\(\text{⇔}4\left(x+4\right)\left(2x-1\right)=0\)
⇔ \(x=-4hoacx=\dfrac{1}{2}\)
KL.....
\(5.x^2-13x-14=0\)
⇔ \(x^2+x-14x-14=0\)
\(\text{⇔}\left(x+1\right)\left(x-14\right)=0\)
\(\text{⇔}x=14hoacx=-1\)
KL......
Còn lại tương tự ( dài quá ~ )
( x + 3 ) ^100 x ( x - 2 )= 0
( x^2 - 16) x ( x^4 + 4)= 0
( x^2 - 3 ) x 9 x -4) <0
giải hộ mk vs
1/2x^4+3x^3-x^2+3x+2=0
2/x^4-5x^3+7x^2-5x-16=0
3/(x+2)^4+(x+4)^4=16
1) \(2x^4+3x^3-x^2+3x+2=0\)
\(\Rightarrow2x^4+x^3+2x^3+x^2-2x^2-x+4x+2=0\)
\(\Rightarrow x^3\left(2x+1\right)+x^2\left(2x+1\right)-x\left(2x+1\right)+2\left(2x+1\right)=0\)
\(\Rightarrow\left(2x+1\right)\left(x^3+x^2-x+2\right)=0\)
\(\Rightarrow\left(2x+1\right)\left(x^3+2x^2-x^2-2x+x+2\right)=0\)
\(\Rightarrow\left(2x+1\right)\left[x^2\left(x+2\right)-x\left(x+2\right)+\left(x+2\right)\right]=0\)
\(\Rightarrow\left(2x+1\right)\left(x+2\right)\left(x^2-x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x+1=0\\x+2=0\\x^2-x+1=0\end{matrix}\right.\)
Ta có:
\(x^2-x+1\)
\(=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\) với mọi x
\(\Rightarrow x^2-x+1\) vô nghiệm
\(\Rightarrow\left[{}\begin{matrix}2x+1=0\\x+2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-2\end{matrix}\right.\)
3) \(\left(x+2\right)^4+\left(x+4\right)^4=16\)
Đặt x + 3 = a, ta được
\(\left(a-1\right)^4+\left(a+1\right)^4=16\)
\(\Rightarrow\left[\left(a-1\right)^2\right]^2+\left[\left(a+1\right)^2\right]^2=16\)
\(\Rightarrow\left(a^2-2a+1\right)^2+\left(a^2+2a+1\right)^2=16\)
\(\Rightarrow a^4+4a^2+1+2a^2-4a^3-4a+a^4+4a^2+1+2a^2+4a^3+4a=16\)
\(\Rightarrow2a^4+2.4a^2+2+2.2a^2=16\)
\(\Rightarrow2a^4+8a^2+4a^2+2=16\)
\(\Rightarrow2a^4+12a^2+2-16=0\)
\(\Rightarrow2a^4+12a^2-14=0\)
\(\Rightarrow2a^4-2a^2+14a^2-14=0\)
\(\Rightarrow2a^2\left(a^2-1\right)+14\left(a^2-1\right)=0\)
\(\Rightarrow\left(a^2-1\right)\left(2a^2+14\right)=0\)
\(\Rightarrow\left(a-1\right)\left(a+1\right).2\left(a^2+7\right)=0\)
\(\Rightarrow\left(a-1\right)\left(a+1\right)\left(a^2+7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a-1=0\\a+1=0\\a^2+7=0\end{matrix}\right.\)
Vì \(a^2\ge0\) với mọi a
\(\Rightarrow a^2+7\ge7\) với mọi a
\(\Rightarrow a^2+7\) vô nghiệm
\(\Rightarrow\left[{}\begin{matrix}a-1=0\\a+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+3-1=0\\x+3+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x+4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)
C1:(5-|x|).(x-3)=0
C2:(x-3)+(x-2)+(x-1)+...+15+16=16
Tìm x
a,35-2(x+7)=4x-13
b,25-x2=16
c,(3-x).(16-x2)=16
d,(x-1).(121+x2)=0
e,3.(x-7)=-x.(x+7)
f,(|x|-1).(9-x2)=0
g,x2-3x=0
h,x.(x-6)-3x+18=0
i,(x-5)2-(2x-6)=0
k,4x2-2x-2x+1=0
Tìm x a) (x-1/3).(x+2/3)=0 b) (3/4x-9/16).(1,5+(-3):x)=0
\(a,\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{2}{3}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\\ b,\left(\dfrac{3}{4}x-\dfrac{9}{16}\right)\left(1,5+\dfrac{-3}{x}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\dfrac{3}{4}x=\dfrac{9}{16}\\-\dfrac{3}{x}=-1,5=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=2\end{matrix}\right.\)
a: \(\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{2}{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
b: \(\left(\dfrac{3}{4}x-\dfrac{9}{16}\right)\left(\dfrac{1}{5}+\left(-3\right):x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{3}{4}x=\dfrac{9}{16}\\\left(-3\right):x=-\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{16}:\dfrac{3}{4}=\dfrac{9}{16}\cdot\dfrac{4}{3}=\dfrac{3}{4}\\x=\left(-3\right):\dfrac{-1}{5}=15\end{matrix}\right.\)