Đề: Cho tam giác ABC vuông tại A, M là trung điểm của BC. Kẻ MD // AB, ME // AC (D ∈ AC, E ∈ AB)
a, Chứng minh tứ giác ADME là hình chữ nhật
b, Cho AB = 6cm, AC = 8cm. Tính độ dài đoạn thẳng AM
Cho tam giác ABC vuông tại A, M là trung điểm của BC. Kẻ
MD // AB, ME // AC (D ∈ AC, E ∈ AB)
a) Chứng minh tứ giác ADME là hình chữ nhật
b) Cho AB = 6cm, AC = 8cm. Tính độ dài đoạn thẳng AM
(làm trong vỡ hoặc nháp)
a) Vì MD//AB;ME//AC lại có ^EAD=90o
=> ME_|_AB;MD_|_AC
=>^MEA=90o;^MDA=90o
Nên: tứ giác ADME là hcn ( tứ giác có 3 góc _|_) (đpcm)
b) Xét tứ giác AEMD có
MD_|_AC => MD là đường cao của tam giác MAC
mà đường cao là đường trung tuyến:
=> DA=DC=1/2AC=4 (cm)
Vậy DA=4cm
ME_|_AB=>ME là đường cao của tam giác MBA
mà đường cao là đường trung tuyến:
=>BE=EA=1/2AB=1/2.6=3 (cm)
Mà EA=MD
=> MD=3cm
AD định lí Pitago vào tam giác vuông MDA ta có:
DA2+MD2=AM2
=>AM2=42+32
=>AM2=16+9
=>AM2=25
=>AM= 5
Vậy AM=5cm
Câu 6 Cho tam giác ABC vuông tại A, M là trung điểm của BC. Kẻ MD // AB, ME // AC (D AC, E AB).
a) Chứng minh tứ giác ADME là hình chữ nhật.
b) Cho AM = 10cm, AD = 6cm. Tính MD?
c) Tam giác ABC cần thêm điều kiện gì để tứ giác ADME là hình vuông?
Hình tự vẽ nhe fen :
a)
Tú giác ADME có:
MD // AB (gt)
ME // AC (gt)
góc A = 90 độ (gt)
=> tứ giác ADME là hình chữ nhật
b)
Vì Tứ giác ADME là hình chữ nhật => Góc MDA = Góc A = Góc MEA = góc EMD = 90 độ ( tính chất hình chữ nhật )
Tam giác ADM có:
Góc MDA = 90 độ
=> Tam giác ADM vuông góc tại D
Áp dụng định lí pitago vào tam giác ADM ta có:
\(AM^2=AD^2+MD^2\Rightarrow MD=8\left(cm\right)\)
c)
Giả sử Tam giác ABC vuông cân:
=> theo bài ra ta có: ME//AC, MD//AB, góc A vuông => Tứ giác ADME là hình chữ nhật (1)
Xét Tam giác ABC có:
ME//AC (gt)
M là trung điểm của BC (gt)
=> ME là đường trung bình của tam giác ABC
=> ME=1/2 AC (tc đường trung bình)
Ta lại có:
tam giác ABC có:
MD//AB (gt)
M là trung điểm của BC (gt)
=> MD là đường trung bình của tam giác ABC
=> MD=1/2AB
Mà Tam giác ABC vuông cân => AC=AB (tính chất tam giác cân)
=> MD=ME=1/2AB=1/2AC (2)
Từ (1) và (2) => Tứ giác ADME là Hình vuông
=> Để tứ giác ADME là hình vuông thì tam giác ABC phải là Tam giác Vuông cân tại A
Cho tam giác ABC có AB = 6cm, AC = 8cm, BC = 10cm. Gọi AM là trung tuyến của tam giác
a) Chứng minh tam giác ABC vuông tại A. Tính độ dài AM
b) Kẻ MD vuông góc AB, ME vuông góc AC. Tứ giác ADME là hình gì? Vì sao
Vì AB^2 + AC^2 = BC^2 ( 6^2 + 8^2 = 10^2 )
=> ΔABC vuông tại A
a. Vì Am là trung tuyến của BC
=> AM =1/2 BC
=> AM = 5cm.
b. Xét tứ giác ADME, ta có:
góc DAE + góc AEM + góc EMD + góc MDA = 360°
=> 90° + 90° + góc EMD + 90° = 360°
=> góc EMD = 90°
=> Tứ giác ADME là hình chữ nhật.
Vì AB^2 + AC^2 = BC^2 ( 6^2 + 8^2 = 10^2 )
=> ΔABC vuông tại A
a. Vì Am là trung tuyến của BC
=> AM =1/2 BC
=> AM = 5cm.
b. Xét tứ giác ADME, ta có:
góc DAE + góc AEM + góc EMD + góc MDA = 360°
=> 90° + 90° + góc EMD + 90° = 360°
=> góc EMD = 90°
=> Tứ giác ADME là hình chữ nhật.
Cho tam giác ABC có AB = 6cm, AC = 8cm, BC = 10cm. Gọi AM là trung tuyết của tam giác ABC. Kẻ MD vuông góc AB, kẻ ME vuông góc AC. a) Chứng minh tam giác ABC vuông. b) Tính độ dài AM c) Tính độ dài DE d) Chứng minh tứ giác BDEC là hình thang e) Chứng minh tứ giác BDEM là hình bình hành f) Chứng minh tứ giác ADME là hình chữ nhật g) Khi AB = AC tứ giác ADME là hình gì ?
Cho tam giác ABC vuông tại A và M là trung điểm cạnh BC. Từ M kẻ MD vuông góc với AB (D thuộc AB) và ME vuông góc với AC (E thuộc AC)
a) Chứng minh tứ giác ADME là hình chữ nhật
b)Gọi N là điểm đối xứng với M qua E,O là giao điểm AM và DE.Chứng minh 3 điểm B,O,N thẳng hàng
c)Tam giác ABC cần điều kiện gì để tứ giác ABCN là hình thang cân
Chotam giác ABC vuông tại A, gọi M là trung điểm của BC từ M kẻ ME//AB; MD//AC (D thuộc AB; E thuộc AC)
a,chứng minh tứ giác ADME là hình chữ nhật
b,tìm điều kiện của tam giác ABC để tứ giác ADEM là hình vuông
c, chứng minh DE=1/2AC
a: Xét tứ giác ADME có
AD//ME
AE//MD
Do đó: ADME là hình bình hành
Hình bình hành ADME có \(\widehat{DAE}=90^0\)
nên ADME là hình chữ nhật
b: Để hình chữ nhật ADME trở thành hình vuông thì AM là phân giác của góc DAE
=>AM là phân giác của góc BAC
Xét ΔABC có
AM là đường trung tuyến
AM là đường phân giác
Do đó: ΔABC cân tại A
=>AB=AC
c:
Sửa đề: DE=1/2BC
Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình của ΔABC
=>DE//BC và \(DE=\dfrac{1}{2}BC\)
Cho tam giác ABC vuông tại A, biết AB=6cm ,AC=8cm. Gọi M là trung điểm của đoạn thẳng BC
a, Tính độ dài BC,AM
b, Kẻ MDvuong góc AB (Dthuoc AB) ME vuông góc AC ( E thuoc AC) . Tứ giác ADME là hình gì?
c, Tam giác ABC có đk gì để tứ giác ADME là hình vuông ?
d, Gọi F đx với A qua M . Kể FH vuông góc vs BC ( H thuộc BC ) Gọi K là trung điểm của BH. CM : FK vuông góc vs EK ?
Cho tam giác ABC vuông tại A và M là trung điểm cạnh BC. kẻ MD vuông góc với AB (D thuộc AB) và ME vuông góc với AC (E thuộc AC)
a)chứng minh tứ giác ADME là hình chữ nhật
b)gọi P là điểm đối xứng của M qua D; Q là điểm đối xứng của M qua E . Chứng minh tứ giác PAMB là hình thoi
c)P đối xứng với Q qua A
a: Xét tứ giác ADME có
góc ADM=góc AEM=góc DAE=90 độ
nên ADME là hình chữ nhật
b: Xét tứ giác AMBP có
D là trung điểm chung của AB và MP
MA=MB
Do đó: AMBP là hình thoi
=>ABlà phân giác của góc MAP(1)
c: Xét tứ giác AMCQ có
E là trung điểm chung của AC và MQ
MA=MC
Do đó: AMCQ là hình thoi
=>AC là phân giác của góc MAQ(2)
Từ (1), (2) suy ra góc PAQ=2*90=180 độ
=>P,A,Q thẳng hàng
mà AP=AQ
nên A là trung điểm của PQ
Cho tam giác ABC vuông tại A , trung tuyến AM .
a) Cho AB=6cm,AC=8cm . Tính độ dài AM . b) Kẻ MD vuông góc với AB ,ME vuông góc với AC . Tứ giác ADME là hình gì? Vì sao?
c) Chứng minh AE = EC
d) Gọi H,I lần lượt là trung điểm của BM và CM Chứng minh rằng: HD=EI
e) Tam giác ABC cần có thêm điều kiện gì để tứ giác ADME là hình vuông?