tinh m=1/(a^2+b^2-c^2)+1/(a^2-b^2+c^2)+1/(-a^2+b^2+c^2) biet a+b+c=0
cho 1/a+1/b+1/c=0 tinh 1/(a^2+2*b*c)+1/(b^2+2*a*c)+1/(c^2+2*b*a)
cho A=\(\dfrac{1}{b^2+c^2-a^2}+\dfrac{1}{c^2+a^2-b^2}+\dfrac{1}{a^2+b^2-c^2}\)
rut gon A biet a+b+c=0
Từ \(a+b+c=0\Rightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2+2ab+b^2=c^2\\a^2+2ac+c^2=b^2\\b^2+2bc+c^2=a^2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a^2+b^2-c^2=-2ab\\a^2+c^2-c^2=-2ac\\b^2+c^2-a^2=-2bc\\\end{matrix}\right.\)
\(\Rightarrow A=\dfrac{1}{-2ab}+\dfrac{1}{-2ac}+\dfrac{1}{-2bc}=\dfrac{a+b+c}{-2abc}=\dfrac{0}{-2abc}=0\)
cho a,b,c khac 0 va a+b+c=0 . tinh Q=\(\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{a^2+c^2-b^2}\)
a + b + c = 0 => c = -a - b ; b= -a - c ; a = - b - c
Thay vào Q ta có :
\(Q=\frac{1}{a^2+b^2-\left(a+b\right)^2}+\frac{1}{b^2+c^2-\left(b+c\right)^2}+\frac{1}{a^2+c^2-\left(a+c\right)^2}\)
\(Q=\frac{1}{a^2+b^2-a^2-b^2-2ab}+\frac{1}{b^2+c^2-b^2-c^2-2bc}+\frac{1}{c^2+a^2-c^2-a^2-2ac}\)
\(Q=\frac{1}{-2ab}+\frac{1}{-2bc}+\frac{1}{-2ac}=\frac{c+a+b}{-2abc}=0\)
Cho a, b, c là ba số thực khác 0 thỏa mãn các điều kiện: a+b+c=0 và 1/a+1/b+1/c=3 tinh (1+1/a)^2+(1+1/b)^2+(1+1/c)^2
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=9\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=9\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{a+b+c}{abc}\right)=9\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=9\)
\(\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2+\left(1+\frac{1}{c}\right)^2=3+2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=3+2.3+9=?\)
Cho a,b,c là cac số thực khác 0 , tổng bằng 0
Tinh S = 1/b^2+c^2-a^2 + 1/c^2+ a^2 -b^2 + 1/a^2 +b^2 -c^2
Vì a+b+c=0
\(\Rightarrow a=-\left(b+c\right)\)
\(\Rightarrow a^2=\left[-\left(b+c\right)\right]^2=b^2+2bc+c^2\)
Do đó \(\frac{1}{b^2+c^2-a^2}=\frac{1}{b^2+c^2-b^2-2bc-c^2}=-\frac{1}{2bc}\)
Tương tự \(\frac{1}{c^2+a^2-b^2}=-\frac{1}{2ca}\) và \(\frac{1}{a^2+b^2-c^2}=-\frac{1}{2ab}\)
Do đó \(S=-\frac{1}{2}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=-\frac{1}{2}.\frac{a+b+c}{abc}=0\)
Cho a+b+c=0
Tinh P =\(\dfrac{1}{a^2+b^2-c^2}+\dfrac{1}{b^2+c^2-a^2}+\dfrac{1}{a^2+c^2-b^2}\)
\(a+b+c=0\)
⇔ \(b+c=-a\)
⇔ \(b^2+c^2-a^2=-2bc\)
CMTT , ta có : \(a^2+b^2-c^2=-2ab;a^2+c^2-b^2=-2ac\)
Thay vào P , ta có :
\(P=\dfrac{1}{-2ab}+\dfrac{1}{-2bc}+\dfrac{1}{-2ac}=\dfrac{c+b+a}{-2abc}=0\) ( abc # 0 )
1)tìm hai số nguyên a,b biết :a>0 và a.(b-2)=3
2)cho a>0 tinh |s| biet: S=(a-b-c)+(-c+b+a)-(a+b)
giup minh di
cho 1/(a^2-bc)+1/(b^2-ca)+1/(c^2-ca)=0
Tinh A= a/(a^2-bc)^2+b/(b^2-ca)^2+c/(c^2-ca)^2
tinh a,b,c
a,b,c biet : 1/2*a=2/3*b=3/4*c va a-b=15
Ta có:\(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\)
\(\Rightarrow\frac{a}{\frac{2}{1}}=\frac{b}{\frac{3}{2}}=\frac{c}{\frac{4}{3}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{\frac{2}{1}}=\frac{b}{\frac{3}{2}}=\frac{c}{\frac{4}{3}}=\frac{a-b}{\frac{2}{1}-\frac{3}{2}}=\frac{15}{0,5}=30\)
\(\Rightarrow a=30.\frac{2}{1}=60\)
\(b=30.\frac{3}{2}=45\)
\(c=30.\frac{4}{3}=40\)
Vậy bộ số \(\left(a;b;c\right)\)là:\(\left(60;45;40\right)\)