cho hbh ABCD. M,N lần lượt là trung điểm của AB,CD. Chứng minh các tứ giác aMCN và MBND là hbh
Cho hình bình hành ABCD, gọi M,N pần lượt là trung điểm của AB,CD. CM:
a, tứ giác AMCN là hbh
b, tứ giác MBND là hbh
CM: a) Ta có: AM = MB = 1/2AB (gt)
ND = NC = 1/2DC (gt)
mà AB = CD (gt) => 1/2AB = 1/2CD
=> AM = MB = ND = NC
Xét tứ giác AMCN có: AM = MC (cmt)
AM // MC (gt)
=> tứ giác AMCN là hình bình hành
b) Xét tứ giác MBND có : MB // DM (gt)
MB = DN (cmt)
=> tứ giác MBND là hình bình hành
cho hbh ABCD có AB=8cm, AD=4cm.Gọi M,N lần lượt là trung điểm của AB và CD
a, cmr : tứ giác AMCN là hbh
b, tứ giác AMND là hình gì ? Vì sao?
c, gọi I là giao điểm của AN và DM, K là giao điểm của BN và CM. Tứ giác MINK là hình gì? cmr: TK//CD
Ta có: AM=MB=AB/2 ( M là trung điểm AB)
DN=NC=DC/2 (N là trung điểm DC)
Mà: AB=AC (ABCD LÀ HBH)
=> AM=MB=DN=NC
Xét tứ giác AMCN:
AM=NC (cmt)
AM//NC (AB//CD)
Vậy AMCN là hình bình hành
b.
Xét tứ giác AMND:
AM=ND (cmt)
AM//ND (AB//CD)
Vậy AMDN là hình bình hành
C. hình như bạn chép sai đề rồi: TK??
cô giáo mk in đề cương mà s mà sai cho dk chứ
1. cho hình bình hành ABCD, M và N lần lượt là trung điểm của AB và CD. Chứng minh các tứ giác AMCN và MBND là hình bình hành
2.Cho tam giác ABC có AB=3cm, AC=5cm. Các điểm M,N,P lần lượt là trung điểm của AB,AC và BC
a, Chứng minh tứ giác BMNP là hình bình hành
b,Tính chu vi của tứ giác BMNP nếu góc B=90 độ
1.
AB=CD (cặp cạnh đối hbh)
AM=AB/2 và CN=CD/2
=> AM=CN (1)
AM thuộc AB; CN thuộc CD mà AB//CD => AM//CN (2)
Từ (1) và (2) => AMCN là hbh(Tứ giác có một cặp cạnh đối // và = nhau thì tứ giác đó là hbh)
2.
a. M là trung điểm AB; N là trung điểm AC => MN là đường trung bình của tgABC
=> MN//BC => MN//BP và MN=BP=BC/2
=> BMNP là hbh (lý do như bài 1)
b. Ta có BMNP là hbh và ^B=90 => BMNP là HCN
\(BC=\sqrt{AC^2-AB^2}=\sqrt{5^2-3^2}=4cm.\)
Từ kq câu a => MN=BC/2=4/2=2 cm
C/m tương tự câu a có NP là đường trung bình của tg ABC => NP=AB/2=3/2=1,5 cm
Chu vi BMNP là
(2+1,5)x2=7 cm
cho hbh abcd có o là giao điểm của ac và bd gọi m,n lần lượt là trung điểm ob và od ,an cắt cd ở e , cm cắt ab tại f
a) chứng minh vaon=vcom và tứ giác amcn là hình bình hành
b) qua o kẻ đường thẳng song song với cf cắt ce tại h chứng minh bf=eh c) từ c kẻ tia song song với bd cắt ad ở p chứng minh e là trung điểm của pf
a: ABCD là hình chữ nhật
=>O là trung điểm chug của AC và BD; AC=BD
=>OM=ON
Xét ΔAON và ΔCOM có
OA=OC
góc AON=góc COM
ON=OM
=>ΔAON=ΔCOM
Xet tứ giác ANCM có
O là trung điểm chung của AC và NM
=>ANCM là hình bình hành
b: Xét ΔDMC có OH//MC
nên DO/OM=DH/HC
=>DH/HC=2/1=2
=>DH=2HC
Xét ΔDOH có
N là trung điểm của DO
NE//OH
=>E là trung điểm của DH
=>DE=EH=1/2DH=HC
=>EH=1/3*DC
Xét ΔMFB và ΔMCD có
góc MFB=góc MCD
góc FMB=góc CMD
=>ΔMFB đồng dạng với ΔMCD
=>FB/CD=MB/MD=1/3
=>FB=1/3CD=EH
Cho HBH ABCD. Gọi E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA. Gọi M, N lần lượt là gia điểm của BD với AF, CH.
a,CMR tứ giác EMGN là HBH
b,Tìm điều kiện của HBH ABCD để tứ giác EMGN là HCN
a: Gọi O là giao của AC và BD
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét tứ giác AECG có
AE//CG
AE=CG
Do đó: AECG là hình bình hành
=>AG//CE và AG=CE
Xét tứ giác AHCF có
AH//CF
AH=CF
Do đó: AHCF là hình bình hành
=>AF//CH và AF=CH
Xét ΔANB có
E là trung điểm của AB
EM//AN
Do đó: M là trung điểm của BN
=>BM=MN
Xét ΔDMC có
G là trung điểm của DC
GN//MC
Do đó: N là trung điểm của DM
=>DN=MN=MB=1/3DB
DN=1/3DB
DO=1/2DB
Do đó: \(\dfrac{DN}{DO}=\dfrac{1}{3}:\dfrac{1}{2}=\dfrac{2}{3}\)
Xét ΔADC có
DO là trung tuyến
DN=2/3DO
Do đó: N là trọng tâm
=>A,N,G thẳng hàng và C,N,H thẳng hàng
Xét ΔABC có
BO là trung tuyến
BM=2/3BO
Do đó: M là trọng tâm
=>A,M,F thẳng hàng và C,M,E thẳng hàng
Xét ΔEBM và ΔGDN có
EB=GD
\(\widehat{EBM}=\widehat{GDN}\)
BM=DN
Do đó: ΔEBM=ΔGDN
=>EM=GN
Xét tứ giác EMGN có
EM//GN
EM=GN
Do đó: EMGN là hình bình hành
b: Để EMGN là hình chữ nhật thì EG=NM
=>\(AD=\dfrac{BD}{3}\)
Cho hbh ABCD . Gọi O là giao điểm của 2 đường chéo. Gọi M,N thứ tự là trung đieemr của OD, OB. Gọi E là giao điểm của AM , CD. F là giao điểm của CN, AB
A/ Chứng minh tứ giác AMCN là hbh
B/ tứ giác AECF là hình gì? Chứng minh
C/ E và F đối xứng với nhau qua O
D/ chung minh EC=2DE
cho hbh ABCD. GỌI M,N lần lượt là trung điểm của AB và CD . Gọi E là giao của AN và DM , F là giao điểm của MC và BN . C/M
a, AD=MN
b, tứ giác BCNM , MENF là hbh
c, E, F và trung điểm của MN thẳng hàng
a) Xét tứ giác AMND có
AM//ND
\(AM=ND\left(\dfrac{1}{2}AB=\dfrac{1}{2}CD\right)\)
Do đó: AMND là hình bình hành
Suy ra: AD=MN
b) Xét tứ giác BCNM có
BM//CN
\(BM=CN\left(\dfrac{1}{2}AB=\dfrac{1}{2}CD\right)\)
Do đó: BCNM là hình bình hành
Xét tứ giác AMCN có
AM//CN
\(AM=CN\left(\dfrac{1}{2}AB=\dfrac{1}{2}CD\right)\)
Do đó: AMCN là hình bình hành
Suy ra: AN//CM
hay EN//MF
Xét tứ giác BMDN có
BM//DN
\(BM=DN\left(\dfrac{1}{2}AB=\dfrac{1}{2}DC\right)\)
Do đó: BMDN là hình bình hành
Suy ra: BN//MD
hay NF//ME
Xét tứ giác MENF có
ME//NF(cmt)
MF//NE(cmt)
Do đó: MENF là hình bình hành
Cho hbh ABCD. Gọi I, K lần lượt là trung điểm của BC, AD a, cm tứ giác ABIK là hbh b, gọi M là giao điểm của AI và BK, N là giao điểm của CK và DI. Chứng minh BC=2MN c, Khi AC=BD và AB=3cm,BC=4cm.Tính diện tích hbh ABCD d, cm AN,DM,IK cùng đi qua 1 điểm G và tính độ dài GK với độ dài AB,BC đã cho ở trên
Cho hbh ABCD . Gọi O là giao điểm của AC và BD . M ,N là trung điểm của OD , OB . Gọi E là giao điểm của AM và CD. F là giao điểm của CN và AB
a) CM tứ giác AMCN là hbh
b)tứ giác AECF là hình j
c) CM E và F đx vs nha qua O
d) CM EC = 2DE